مدل‌سازی اجزای محدود انتشار امواج لمب در یک ورق با ضخامت متغیر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مکانیک، دانشگاه شهید چمران اهواز

2 گروه مهندسی مکانیک دانشگاه شهید چمران اهواز

چکیده

خطوط لوله، شریان‌های حیاتی در صنعت نفت و گاز بوده و با توجه به هزینه‌ی بسیار زیاد احداث آن‌ها، به عنوان یکی از زیرساخت‌ها و سرمایه‌های ملی هر کشور محسوب می‌گردند. پدیده‌ی سایش از جمله مهم‌ترین عوامل آسیب به خطوط لوله شناخته می‌شود که سبب کاهش ضخامت در نواحی مختلف آن می‌گردد. تغییر ضخامت ایجاد شده، سبب تمرکز بیشتر تنش در خطوط لوله می‌شود و شکست به‌راحتی رخ می‌دهد. آزمون‌های فراصوتی یکی از روش‌هایی است که در بازرسی خطوط لوله مورد استفاده قرار می‌گیرد. از میان تکنیک‌های مختلف این نوع آزمون‌، امواج هدایت‌شونده‌ی لمب، به‌دلیل استهلاک کم در مسیر انتشار، از جایگاه ‌ویژه‌ای برخوردارند؛ اما رفتار پیچیده‌ی این امواج در سازه‌هایی با ضخامت متغیر، کار تفسیر داده‌های به‌دست آمده از اجرای یک آزمون را دشوار می‌سازد. بررسی رفتار امواج لمب در لوله‌هایی با تغییرات ضخامت امری به مراتب دشوار می‌باشد. از این رو، در پژوهش حاضر، به مدل‌سازی دوبعدی اجزای محدود رفتار این امواج و بررسی ضرایب عبور و بازتاب درحضور تغییرات ضخامت پرداخته شده است. نتایج بررسی تأثیر تغییر عمق سایش بر سیگنال‌های عبوری و بازتابی حاکی از آن است که با استفاده از تکنیک امواج لمب می‌توان به‌خوبی تغییرات ضخامت یک قطعه را پایش نمود. همچنین بررسی تغییرات فرکانس سیگنال ارسالی به داخل ورق نشان می‌دهد که در برخی بازه‌های فرکانسی، مود S0 ایجاد شده جهت برخورد با عیب، حساسیت بسیار کمی به تغییرات ضخامت دارد. بنابراین انتخاب فرکانس مناسب در بازرسی‌‌های انجام شده توسط امواج لمب گامی مهم در تشخیص وضعیت سازه می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Finite Element Modeling of Lamb Waves Propagation in a Thickness Variable Plate

نویسندگان [English]

  • Amin Yaghootian 1
  • Nasim Mohammadi 2
  • Ali Valipour 2
1 Assistant Professor, Department of Mechanical Engineering, Shahid Chamran University of Ahvaz
2 Department of Mechanical Engineering, Shahid Chamran University of Ahvaz
چکیده [English]

The phenomenon of erossion is known as one of the most important causes of damage to pipelines, which reduces the thickness in different areas. Reduction in thickness causes more stress to be concentrated in the pipelines and failure occurs more easily. Ultrasonic tests are one of the methods used to inspect pipelines. Among the various techniques of this type of test, the Lamb guided waves have a special place due to the low depreciation in the propagation path; But the complex behavior of these waves in structures of variable thickness makes it difficult to interpret the data obtained from a test. It is so difficult to study the behavior of Lamb waves in pipes with variation in thickness. Therefore, in this paper, two-dimensional modeling of the finite elements of the behavior of these waves and the study of transmission and reflection coefficients in the presence of thickness variations have been investigated. The results of the study of the effect of changing the erossion depth on the transmiting and reflecting signals indicate that using the Lamb waves test, changes in the thickness of a piece can be well monitored. Also, the study of changes in the frequency of the signal sent to the plate shows that in some frequency ranges, the S0 mode created to deal with the defect has very little sensitivity to changes in thickness. Therefore, choosing the appropriate frequency in inspections performed by Lamb waves is an important step in determining the condition of the structure.

کلیدواژه‌ها [English]

  • Lamb Guided Waves
  • FEM
  • Erossion
  • Transmission and Reflection Coefficients
Rose, J. L., 2004. Ultrasonic waves in solid media. Cambridge university press.
Viktorov, I. A., 1967. Rayleigh and Lamb waves: physical theory and applications. Plenum press, New York.
Cho, Y., 2000. “Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation”. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 47(3), May, pp. 591-603.
Rose, J. L., Zhu, W., Cho, Y., 1998. “Boundary element modeling for guided wave reflection and transmission factor analyses in defect classification”. In Ultrasonics Symposium, Proceedings, 1998 IEEE (Vol. 1, pp. 885-888).
Pagneux, V., Maurel, A., 2006. “Lamb wave propagation in elastic waveguides with variable thickness”. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 462(2068), April, pp. 1315-1339.
Malladi, R., Dabak, A., Murthy, N. K., 2014. “Modelling ultrasound guided wave propagation for plate thickness measurement”. In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, March, pp. 90630Q-90630Q.
دریابر، پ.، فرزین، م. و هنرور، ف.، 1392. "استخراج مدهای مختلف انتشار موج لمب در یک ورق آلومینیوم چسبیده شده به ورق کامپوزیت توسط اجزاء محدود و آزمایش"، مهندسی مکانیک مدرس، 13(1)، ص 95-106.‎
Barshinger, J. N., Rose, J. L., 2002. “Ultrasonic guided wave propagation in pipes with viscoelastic coatings”. Quantitative Nondestructive Evaluation, 615(1), pp. 239-246.
SIMULIA, A., 2011. ABAQUS Analysis User’s Manual. 6.12-1.
Bartoli, I., di Scalea, F. L., Fateh, M., Viola, E., 2005. “Modeling guided wave propagation with application to the long-range defect detection in railroad tracks”. Ndt & E International, 38(5), pp. 325-334.
Alleyne, D., Cawley, P., 1991. “A two-dimensional Fourier transform method for the measurement of propagating multimode signals”. The Journal of the Acoustical Society of America, 89(3), pp. 1159-1168.
Moser, F., Jacobs, L. J., Qu, J., 1999. “Modeling elastic wave propagation in waveguides with the finite element method”. Ndt & E International, 32(4), pp. 225-234.