کنترل کیفیت متالورژیکی آلیاژ آلومینیم 7075 بعد از عملیات پیرسازی با آزمون غیرمخرب جریان گردابی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، مهندسی مواد، دانشگاه صنعتی نوشیروانی بابل

2 دانشیار گروه مهندسی مواد دانشگاه صنعتی نوشیروانی بابل

چکیده

< p>آزمون غیر مخرب جریان گردابی از روش‌های الکترومغناطیسی است که می‌توان از آن برای ارزیابی و کنترل کیفیت متالورژیکی ‏آلیاژهای صنعتی استفاده نمود. اجرای سریع و ماهیت دیجیتالی پاسخ‌های این روش سبب شده که از آن برای راه‌اندازی خطوط ‏مکانیزه بازرسی و کنترل کیفی خط تولید قطعات فلزی استفاده شود. هدف از این مقاله، بررسی شرایط کنترل کیفیت متالورژیکی ‏ورق‌های آلیاژ آلومینیم 7075 بعد از عملیات حرارتی پیرسازی با استفاده از روش جریان گردابی است. به این منظور آزمون‌های ‏مخرب متالوگرافی، سختی سنجی و هدایت الکتریکی به همراه آزمون غیرمخرب جریان گردابی انجام و نتایج آنها با یکدیگر مقایسه ‏شدند. نمونه‌هایی از این آلیاژ به شکل ورق به ضخامت 2/1 میلی‌متر تهیه شد. عملیات انحلالی در دمای 470 درجه سلسیوس به ‏مدت 20 دقیقه انجام شد و سپس عملیات حرارتی پیرسازی مصنوعی در دماها و زمان‌های مختلف انجام شد. مطالعات ریزساختاری ‏توسط میکروسکوپ‌های نوری و الکترونی روبشی، رسانایی بر اساس استاندارد ‏‎(%ICAS)‎‏ و سختی‌سنجی به روش برینل انجام شد. در ‏ادامه با استفاده از یک دستگاه جریان گردابی در فرکانس ‏‎ kHz‏8، پاسخ‌های الکترومغناطیسی نمونه‌ها مورد ارزیابی و مقایسه قرار ‏گرفت. نتایج نشان داد که برای کنترل و تضمین کیفیت محصولات پیرسازی شده، استفاده از شاخص سختی نمی‌تواند به تنهایی ‏کفایت کند. همچنین آزمایش متالوگرافی محدودیت‌های اجرایی در فرایندهای تولید دارد. مشخص شد که پاسخ‌های جریان گردابی ‏تحت تاثیر تغییرات ریزساختار حاصل از عملیات پیرسازی است و می‌توان توسط این آزمون، قطعات مختلف آلیاژ آلومینیم 7075 را ‏به صورت غیرمخرب از یکدیگر تفکیک نمود.‏

کلیدواژه‌ها


عنوان مقاله [English]

Metallurgical Quality Control of Aged 7075 Al Alloy Using Eddy Current Nondestructive Testing Method

نویسندگان [English]

  • Seyed Amir Hosseini 1
  • Majid Abbasi 2
1 MSc in Materials Engineering, Babol Noshirvani University of Technology, Iran&lrm;
2 Associate Professor, Materials Engineering Department, Babol Noshirvani University of Technology
چکیده [English]

< p >The eddy current non-destructive testing (ECT) is one of the electromagnetic methods that can be ‎used to evaluate and control the metallurgical quality of industrial alloys. The rapid implementation and digital nature of the answers have ‎led to its use in setting up automatic inspection and quality control lines . The purpose of this paper is to investigate the metallurgical quality control ‎conditions of 7075 aluminum alloy sheets after aging heat treatment ‎using the ECT method. For this purpose, the destructive tests of metallography, hardness and ‎electrical conductivity were performed along with the eddy currents non-destructive testing and ‎then their data were compared with each other. The sheet samples of this alloy were prepared in ‎the form of a 1.2 mm thickness. The solution heat treatment was performed at 470 centigrade ‎for 20 minutes and then artificial aging heat treatment was performed at different temperatures ‎and times. Microstructural studies were performed by optical and scanning electron ‎microscopes, standard conductivity (% ICAS) and Brinell hardness methods. Then, using a ‎eddy current apparatus at 8 kHz, the electromagnetic responses of the samples were evaluated ‎and compared. The results showed that to quality control and assurance of the aged products, ‎the use of hardness index alone can not suffice. In addition, the metallographic method has ‎executive limitations in production processes. It was found that the eddy current responses are ‎affected by microstructural changes resulting from aging process. Using this method, different ‎parts of 7075 aluminum alloy can be non-destructively separated from each other.‎

کلیدواژه‌ها [English]

  • NDE
  • Eddy Current Testing
  • Quality Control
  • aging
  • 7075 Al Alloy.‎
Mackenzie D.S., Totten G.E. (2003). Handbook of Aluminum, Vol. 1, Physical Metallurgy and Processes, Marcel Dekker, New York.
Polmear J., (2004). Aluminium Alloys: A century of age hardening. Materials Forum, 23, 18, 1-14.
Koch G.H.; Kolijn D.T. (1998). The heat treatment of the commercial aluminum alloy 7075. Materials Science and Engineering, 9, 438, 1-12.
Kilic S.; Kacar I.; Sahin M.; Ozturk F., Erdem O. (2019). Effects of aging temperature, time, and pre-strain on mechanical properties of AA7075. Materials Research, 22, 5, 1-13.
ASM International, (2010) ASM Handbook Vol. 17, Nondestructive Evaluation and Quality Control, 10th Edition.
Hellier C.; Janson J. (2003). Handbook of Nondestructive Evaluation; Second Edition, New York, McGraw-Hill Companies.
International Atomic Energy Agency; (2011). Eddy Current Testing at Level 2, 1st Edition, Vienna International Centre.
کاشفی م.؛ کهربایی س.؛ مسلمی معنی ص. (1392). تعیین غیر مخرب میزان کاربید، سختی و عمق سخت شده در سطح قطعات چدنی، فصلنامه علوم و مهندسی سطح ایران، جلد 9، شماره 18، ص 23-31.
عباسی م.؛ جواهری م.؛ ریاضی س.م. (1397). طراحی سامانه ارزیابی غیرمخرب سختی قطعات کربونیتروره شده با آزمون جریان ‌گردابی: مطالعه موردی استکانی دریچه. فصلنامه تحقیقات موتور. سال ۵۲ شماره 52، ص ۱۹-۲۸.
جواهری، م.؛ عباسی، م.؛ بوترابی، س.م.ع.؛ عزیزی، ن. (1397). ارزیابی غیرمخرب گلوله‌های آسیا چدن پرکروم توسط آزمون جریان گردابی، نشریه علمی فناوری آزمون‌های غیرمخرب، سال 2، شماره 2، ص 49-57.
جواهری م.، عباسی م.، (1396). ارزیابی ریزساختار و سختی فولاد ریختگی عملیات حرارتی شده با آزمون غیرمخرب جریان گردابی، پژوهش‌نامه ریخته‌گری، جلد 1، شماره 3، ص 149-160‏.
اسدی ا.، عباسی م.، شامقلی م. (1394). ارزیابی غیرمخرب ریزساختار چدن مقاوم به سایش نایهارد4 با استفاده از آزمون جریان گردابی، مجله مهندسی متالورژی، دوره 18، شماره 59، پاییز، 34-43.
Asadi, A.; Abbasi M.; Shamgholi M. (2018). Eddy current detection of retained austenite in Ni-hard4 cast iron. Research in Nondestructive Evaluation, 29, 1, 38-47.
Singh G.; Bapat H.M.; Singh B.P.; Bandyopadhyay M.; Puri R. K.; Badodkar D. N. (2013) Thickness evaluation of aluminium plate using pulsed eddy current technique. The Institution of Engineers Indian, 12, 23, 89–93
Rosen M.; Horowitz E. (1992). The aging process in aluminum alloy 2024 studied by means of eddy currents. Materials Science and Engineering A, 8, 22, 191-198.
Guo B., Zhang Z., Li R. (2017). Ultrasonic and eddy current non-destructive evaluation for property assessment of 6063 aluminum alloy. NDT and NDE International, 36, 573, 1-24.
Saunders N., Guo Z., Li X., Miodownik A.P., Schillé J.-Ph., (2003). Using JMatPro to Model Materials Properties and Behavior. Journal of Metals, 55, December, 60-65.
Park J.K., Ardell A.J, (1982). Micristructure of the commerical 7075 aluminim alloy in the T651 and T7 tempers, Materials Science and Engineering, 3, 8, 228-236.
Du Z.W.; Sun Z.M.; Shao B.L; Chen C.Q. (2003). Quantitative evaluation of precipitates in An Al-Zn-Mg-Cu alloy after isothermal aging. Material Characteriztion. 56, 121-128
Fang S.F., Wanga M.P., Song M. (2009). An approach for the aging process optimization of Al–Zn–Mg–Cu series alloys. Materials and Design, 5, 218, 2460-2467.
Prabhu T.R. (2016). Effects of ageing time on the mechanical and conductivity properties for various round bar diameters of AA 2219 aluminium alloy”, Engineering Science and Technology, International Journal, 22, 533, 1-10.
Guapuriche M.S.; Zhao Y.Y.; Pitman B.A.; Greene A. (2006). Correlation of strength with hardness and electrical conductivity for aluminium alloy 7010, Transactions Technology Publications, 24, 72, 1-8.