به‌کارگیری روش‌های پردازش تصاویر حرارتی به‌منظور بهبود شناسایی عیوب قطعات تولیدشده به روش ساخت افزایشی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، پردیس دانشکده های فنی، دانشگاه تهران

2 دانشیار، مهندسی مکانیک، پردیس دانشکده های فنی، دانشگاه تهران

3 دانشجوی دکترا، مهندسی مکانیک، پردیس دانشکده های فنی، دانشگاه تهران

4 استادیار، مهندسی مکانیک، دانشگاه اصفهان

چکیده

با توجه به توسعه روزافزون به‌کارگیری قطعات و تجهیزات ساخته‌شده به روش تولید افزایشی در صنایع مختلف، بهره‌گیری از روش‌های مناسب بازرسی این قطعات، به‌منظور بررسی کیفیت تولید و شناسایی عیوب، اهمیت بسزایی یافته است. در این پژوهش یک نمونه پلیمری ساخته‌شده به روش تولید افزایشی از جنس PLA به روش دمانگاری مورد بازرسی قرار گرفت. یک منبع حرارتی نوری نمونه را گرم نمود. تصاویر حرارتی در مدت‌زمان روشن بودن منبع حرارتی و مدتی پس از قطع منبع توسط دوربین حرارتی ثبت شد. به‌منظور بهبود تصاویر حرارتی، دو روش پردازش پرکاربرد به نام‌های پردازش فازی پالسی (PPT) و تجزیه‌وتحلیل مولفه اصلی(PCA) به کار گرفته شدند. پس از اعمال این روش‌ها به داده‌های منتخب خام حرارتی، مشخص شد که درحالی‌که تنها 18 عیب از 20 عیب موجود در نمونه از طریق بهترین فریم خام حرارتی قابل‌تشخیص است، همه‌ 20 عیب موجود در نمونه از طریق تصاویر پردازش‌شده قابل‌شناسایی هستند. برای مقایسه کمی تصاویر پردازش‌شده ازنظر بهبود وضوح عیوب که تاثیر مستقیمی بر سهولت در شناسایی آن‌ها دارد، پارامتر نسبت سیگنال به نویز (SNR) مورداستفاده قرار گرفت. با توجه به بالاتر بودن میزان SNR در کلیه تصاویر پردازش‌شده از بهترین تصویر خام حرارتی، مشخص شد که کلیه روش‌های پردازش بکار گرفته شده شناسایی عیوب را تسهیل می‌نمایند. همچنین مشاهده شد که روش PCA بالاترین میزان میانگین SNR را داراست. این مقدار برای تصویر PCA که معادل 14.75 است، تقریبا سه برابر میزان میانگین SNR برای بهترین تصویر خام حرارتی، معادل 4.75، بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Implementing Thermal Image Processing Techniques for Enhancing the Detectability of Defects in Thermography of Additive Manufacturing Components

نویسندگان [English]

  • Pouria Meshkizadeh 1
  • Mohammadreza Farahani 2
  • Mojtaba Rezaee Hajideh 3
  • Mohammad Heidari-Rarani 4
1 Msc, School of Mechanical Engineering, College of Engineering, University of Tehran
2 Associate Professor, School of Mechanical Engineering, College of Engineering, University of Tehran
3 School of Mechanical Engineering, College of Engineering, University of Tehran
4 Assistant Professor, Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan
چکیده [English]

Nowadays, as the application of additive manufactured equipment is increasing in the industry, an appropriate inspection method for identifying defects of these products has become a pressing need. In this contribution, a study on inspection of the artificial defects of an additive manufactured specimen via thermography was carried out. A projector with 2KW in power was utilized as the heating source. The temperature of the sample was recorded by a thermal camera. Moreover, the camera kept recording the sample’s temperature for a while after that heating source was shut down. The best frame of raw thermal data was selected. To enhance the thermal raw data in case of the contrast between defective and sound regions and the number of detectable defects, two well-known thermal image processing methods, namely, Pulsed Phase Thermography (PPT) and Principle Component Analysis (PCA), were applied to the initial data. It was illustrated that all defects could be detected through processed images, whereas only 18 defects out of 20 could be revealed in the best frame of raw thermal data. Furthermore, for evaluating the ability of each technique to improve the contrast, the SNR parameter was adopted. According to the concluded data, the processed image via PCA with SNR average equal to 14.75 had the highest amount. This amount was almost three times higher than that of the best frame of initial thermal data.

کلیدواژه‌ها [English]

  • Nondestructive Tests
  • Thermography
  • thermal image processing
  • Additive Manufacturing
D’Accardi, E., Altenburg, S., Maierhofer, C., Palumbo, D. and Galietti, U., 2019. Detection of Typical Metal Additive Manufacturing Defects by the Application of Thermographic Techniques. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 27, No. 1, p. 24).
DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A. and Zhang, W., 2018. Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, pp.112-224.
Frazier, W.E., 2014. Metal additive manufacturing: a review. Journal of Materials Engineering and performance, 23(6), pp.1917-1928.
Yao, T., Deng, Z., Zhang, K. and Li, S., 2019. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Composites Part B: Engineering, 163, pp.393-402.
Popescu, D., Zapciu, A., Amza, C., Baciu, F. and Marinescu, R., 2018. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, pp.157-166.
O'Neill, C.J., Creedon, S.B., Brennan, S.A., O'Mahony, F.J., Lynham, R.S., Guerin, S., Gul, R. and Harty, J.A., 2018. Acetabular revision using trabecular metal augments for Paprosky type 3 defects. The Journal of arthroplasty, 33(3), pp.823-828.
Capote, G.A.M., Rudolph, N.M., Osswald, P.V. and Osswald, T.A., 2019. Failure surface development for ABS fused filament fabrication parts. Additive Manufacturing, 28, pp.169-175.
Siegel, J.E., Beemer, M.F. and Shepard, S.M., 2020. Automated non-destructive inspection of Fused Filament Fabrication components using Thermographic Signal Reconstruction. Additive Manufacturing, 31, p.100923.
Strantza, M., Aggelis, D.G., De Baere, D., Guillaume, P. and Van Hemelrijck, D., 2015. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods. Sensors, 15(10), pp.26709-26725.
Shrestha, R., Chung, Y. and Kim, W., 2019. Wavelet transform applied to lock-in thermographic data for detection of inclusions in composite structures: Simulation and experimental studies. Infrared Physics & Technology, 96, pp.98-112.
Ning, Z., Liu, R., Elhajjar, R.F. and Wang, F., 2017. Micro-modeling of thermal properties in carbon fibers reinforced polymer composites with fiber breaks or delamination. Composites Part B: Engineering, 114, pp.247-255.
Liu, J., Yang, W. and Dai, J., 2010. Research on thermal wave processing of lock-in thermography based on analyzing image sequences for NDT. Infrared Physics & Technology, 53(5), pp.348-357.
Bartlett, J.L., Heim, F.M., Murty, Y.V. and Li, X., 2018. In situ defect detection in selective laser melting via full-field infrared thermography. Additive Manufacturing, 24, pp.595-605.
Seppala, J.E. and Migler, K.D., 2016. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Additive manufacturing, 12, pp.71-76.
Montinaro, N., Cerniglia, D. and Pitarresi, G., 2018. Defect detection in additively manufactured titanium prosthesis by flying laser scanning thermography. Procedia Structural Integrity, 12, pp.165-172.
Maldague, X., & Marinetti, S. (1996). Pulse phase infrared thermography. Journal of applied physics, 79(5), 2694-2698.
Cadelano, G., Bortolin, A., Ferrarini, G., Molinas, B., Giantin, D., Zonta, P. and Bison, P., 2016. Corrosion detection in pipelines using infrared thermography: experiments and data processing methods. Journal of Nondestructive Evaluation, 35(3), p.49.
Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Wang, D. and Ahmed, T., 2003. Reconstruction and enhancement of active thermographic image sequences. Optical Engineering, 42(5), pp.1337-1343.
Lopez, F., Ibarra-Castanedo, C., de Paulo Nicolau, V. and Maldague, X., 2014. Optimization of pulsed thermography inspection by partial least-squares regression. Ndt & E International, 66, pp.128-138.
Maldague, X., 2001. Theory and practice of infrared technology for nondestructive testing.
D’Accardi, E., Palumbo, D., Tamborrino, R., & Galietti, U. (2018). Quantitative analysis of thermographic data through different algorithms. Procedia Structural Integrity, 8, 354-367.
Rajic, N. (2002). Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Composite structures, 58(4), 521-528.
Katunin, A., Wronkowicz-Katunin, A. and Wachla, D., 2019. Impact damage assessment in polymer matrix composites using self-heating based vibrothermography. Composite Structures, 214, pp.214-226.
Gong, J., Liu, J., Qin, L. and Wang, Y., 2014. Investigation of carbon fiber reinforced polymer (CFRP) sheet with subsurface defects inspection using thermal-wave radar imaging (TWRI) based on the multi-transform technique. Ndt & E International, 62, pp.130-136.
Omar, M.A., Said, Z., Al Raisi, A., Al Rahman, Y.A., Abusafieh, A. and Sankaran, G.N., 2016. The Calibration and Sensitivity Aspects of a Self-Referencing Routine When Applied to Composites Inspection: Using a Pulsed Thermographic Setup. Journal of Nondestructive Evaluation, 35(3), p.51.
Saeed, N., Omar, M.A., Abdulrahman, Y., Salem, S. and Mayyas, A., 2018. IR thermographic analysis of 3D printed CFRP reference samples with back-drilled and embedded defects. Journal of Nondestructive Evaluation, 37(3), p.59.