بکارگیری ویژگی‌های خاص درساخت قطعات تولید افزایشی برای کالیبراسیون دقیق تجهیزات آزمون فراصوتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد دانشکده مهندسی مکانیک دانشگاه علم و صنعت ایران

2 دانشگاه علم و صنعت ایران

چکیده

چکیده
برای بکارگیری متدهای آزمون غیرمخرب جهت ارزیابی قطعات تولید شده به روش تولید افزایشی، نیاز به سنجه‌هایی می-باشد که نماینده عیوب محتمل در قطعه مورد تست باشند. در این رابطه با توجه به عیوب رایج قطعات تولید افزایشی (تخلخل گازی، تخلخل پودری، عدم همجوشی و غیره) و تفاوت مکانیزم شکلگیری آن‌ها با عیوب محتمل در قطعات سنتی، بکارگیری بلوک‌های کالیبراسیون موجود کاربرد موثری ندارند. در مقاله حاضر، یک نمونه بلوک مرجع ابتکاری با ویژگی‌های جانمایی شده داخلی برای کالیبراسیون تجهیزات فراصوت طراحی و به روش ذوب انتخابی لیزری ساخته شد و مورد تست فراصوت پالس-اکو تماسی قرار گرفته است. برای حصول اطمینان از صحت و دقت ساخت ویژگی‌ها، برشکاری انجام گرفت و ابعاد ویژگی-ها با میکروسکوپ نوری و فواصل آن‌ها از سطوح آزاد به کمک میکرومتر و کولیس اندازه‌گیری شد. نتایج، صحت و دقت ابعادی این نمونه را تصدیق و کاربرد آن را به عنوان بلوک مرجع تست‌های غیرمخرب تایید می‌کند

کلیدواژه‌ها


عنوان مقاله [English]

Utilization of engineered (embedded) features in additive manufactured parts for calibration of ultrasonic testing equipment

نویسندگان [English]

  • mohammad Riahi 1
  • Hamidreza Javidraad 2
1 Professor, School of Mechanical Engineering, IUST
2 Mechanical Engineering IUST
چکیده [English]

Abstract:
Metal additive manufacturing is an innovative technology that opens up new visions in any industrial field these days. This technology is growing rapidly, entering various industries every day. After over 30 years from the introduction of metal additive manufacturing into the industrial world, today’s demand is to make mechanical parts with high precision by metal additive manufacturing. Until now, methods like high precision grinding or micro-machining processes are used to make more precise dimensions in parts. Those methods have their own limits that could be eliminated with additive manufacturing. In this paper, attempts are made to compare conventional precise processes with metal additive manufacturing from different aspects. Surface finish in these two categories is discussed and some advice for improving the surface quality of metal additive manufacturing parts is proposed. Applicability and utilization of metal additive manufacturing as a precise metal fabrication method in various industries are also discussed.

کلیدواژه‌ها [English]

  • Keywords - Additive manufacturing
  • precision manufacturing
  • inkjet
  • benchmark
  • micro fabrication
[1] D. Cerniglia, M. Scafidi, A. Pantano, J. Rudlin, “Inspection of additive-manufactured layered components”, Ultrasonics 62 (2015), pp. 292–298. http://dx.doi.org/10.1016/j.ultras.2015.06.001
[2] D. Mahmoud, M. A. Elbestawi, “Selective laser melting of porosity graded lattice structures for bone implants”, The International Journal of Advanced Manufacturing Technology, February 2019, Volume 100, Issue 9–12, pp 2915–2927. https://doi.org/10.1007/s00170-018-2886-9
[3] L. Koester, R. A. Roberts, D. J. Barnard, S. Chakrapani, S. Singh, R. Hogan, L. J. Bond, “NDE of Additively Manufactured Components with Embedded Defects (Reference Standards) Using Conventional and Advanced Ultrasonic Methods”, in: 43rd Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 36, (2017).
[4] F. H. Kim, H. Villarraga-Gómez, S. P. Moylan, “Inspection of embedded internal features in additively manufactured metal parts using metrological x-ray computed tomography”, in: ASPE/euspen, (2016), pp. 191 – 195.
[5] W. Du, Q. Bai, Y. Wang, B. Zhang, “Eddy current detection of subsurface defects for additive/subtractive hybrid manufacturing” The International Journal of Advanced Manufacturing Technology, April 2018, Volume 95, Issue 9–12, pp. 3185–3195. https://doi.org/10.1007/s00170-017-1354-2
[6] G. Davis, R. Nagarajah, S. Palanisamy, R. A. R. Rashid, P. Rajagopal, K. Balasubramaniam, “Laser ultrasonic inspection of additive manufactured components”, The International Journal of Advanced Manufacturing Technology, 2019, pp. 1 – 9. https://doi.org/10.1007/s00170-018-3046-y
[7] N. P. Aleshin, M. V. Grigor’ev, N. A. Shchipakov, N. V. Krys’ko, I. S. Krasnov, M A. Prilutskii, Ya. G. Smorodinskii, “On the Possibility of Using Ultrasonic Surface and Head Waves in Nondestructive Quality Checks of Additive Manufactured Products”, Russian Journal of Nondestructive Testing, 2017, Vol. 53, No. 12, pp. 830 – 838.
[8] A. Lopez, R. Bacelar, I. Piresa, T. G. Santos, José Pedro Sousa, Luísa Quintino, “Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing”, Additive Manufacturing Volume 21, May 2018, Pages 298-306. https://doi.org/10.1016/j.addma.2018.03.020
[9] N. P. Aleshin, V. V. Murashov, N. A. Shchipakov, I. S. Krasnov, D. S. Lozhkova, “Experimental Research into Possibilities and Peculiarities of Ultrasonic Testing of Additive Manufactured Parts”, Russian Journal of Nondestructive Testing, 2016, Vol. 52, No. 12, pp. 685 – 690.
[10] P. H. Yang, X. X. Gao, J. Liang, Y. W. Shi, N. Xu, “Nondestructive Testing of Defects in Additive Manufacturing Titanium Alloy Components”, in: 15th Asia Pacific Conference for Nondestructive Testing (APCNDT2017), 2017, Singapore.
[11] S. K. Everton, P. Dickens, C. Tuck, B. Dutton, “Identification of Sub-Surface Defects in Parts Produced by Additive Manufacturing, Using Laser Generated Ultrasound”, in: Materials Science & Technology, 2016.
[12] Everton, S., Dickens, P., Tuck, C., Dutton, B., “Using Laser Ultrasound to Detect Subsurface Defects in Metal Laser Powder Bed Fusion Components”, JOM (2018), March 2018, Volume 70, Issue 3, pp 378–383. https://doi.org/10.1007/s11837-017-2661-7
[13] S. K. Everton, P. Dickens, C. Tuck, B. Dutton, “Evaluation of laser ultrasonic testing for inspection of metal additive manufacturing” in: Proceeding of SPIE Vol. 9353, 2015. doi: 10.1117/12.2078768
[14] A. Jansson, A. R. Zekavat, L. Pejryd, “Measurement of Internal Features in Additive Manufactured Components by the use of Computed Tomography”, in: International symposium of digital industrial radiology and computed tomography (2015).
[15] V. Dayal, Z. G. Benedict, N. Bhatnagar, A. G. Harper, “Development of Composite Calibration Standard for Quantitative NDE by Ultrasound and Thermography”, in: 44th Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 37, AIP Conf. Proc. 1949, 060006-1–060006-7; https://doi.org/10.1063/1.5031552
[16] L. W. Koester, H. Taheri, T. A. Bigelow, P. C. Collins, L. J. Bond, “Nondestructive Testing for Metal Parts Fabricated Using Powder-Based Additive Manufacturing”, Materials Evaluation, Vol. 76, Issue 4 (2018), pp. 514 – 524. Available at: http://works.bepress.com/timothy_bigelow/23/
[17] ASTM E1158-04, Standard Guide for Material Selection and Fabrication of Reference Blocks for the Pulsed Longitudinal Wave Ultrasonic Examination of Metal and Metal Alloy Production Material, ASTM International, West Conshohocken, PA, 2004, www.astm.org dio:10.1520/E1158-04
[18] A. Tawfik, P. Bills, L. Blunt, R. Racasan, “Development of an artefact to detect unfused powder in additive manufactured components using X-ray CT”, in: 8th Conference on Industrial Computed Tomography, Wels, Austria (iCT 2018).
[20] Fazarinc, M., Muhič, T., Kugler, G., and Terčelj, M., 2012. “Thermal fatigue properties of differently constructed functionally graded materials aimed for refurbishing of pressure-die-casting dies”. Engineering Failure Analysis, 25, pp. 238 – 249.
[21] H. Ali, H. Ghadbeigi, K. Mumtaz, “Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V”,  Materials Science & Engineering A, Volume 712, 17 January 2018, Pages 175-187. https://doi.org/10.1016/j.msea.2017.11.103
[22] V. M. Ushakov, D. M. Davydov, “Calibration Blocks for Ultrasonic Nondestructive Testing”, Russian Journal of Nondestructive Testing, March 2006, Volume 42, Issue 3, pp 149–155. https://doi.org/10.1134/S1061830906030016
[23] A. Alafaghani, A. Qattawi, M. A. G. Castañón, “Effect of manufacturing parameters on the microstructure and mechanical properties of metal laser sintering parts of precipitate hardenable metals”, The International Journal of Advanced Manufacturing Technology, December 2018, Volume 99, Issue 9–12, pp 2491–2507. https://doi.org/10.1007/s00170-018-2586-5
[24] ISO 19675:2017, Non-destructive testing — Ultrasonic testing — Specification for a calibration block for phased array testing (PAUT), International Organization for Standardization, 2017.
[25] C. Qiu, N. J. E. Adkins, M. M. Attallah, “Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V”, Materials Science & Engineering A 578 (2013), pp. 230–239. http://dx.doi.org/10.1016/j.msea.2013.04.099
[26] D. R. Foster, M. J Dapino, S. S. Babu, “Elastic constants of Ultrasonic Additive Manufactured Al 3003-H18”, Ultrasonics 53, (2013), pp. 211 – 218. https://doi.org/10.1016/j.ultras.2012.06.002
[27] J. Hiller, P. Hornberger, “Measurement accuracy in X-ray computed tomography metrology: Toward a systematic analysis of interference effects in tomographic imaging”, Precision Engineering 45, (2016), pp. 18–32. http://dx.doi.org/10.1016/j.precisioneng.2015.12.003
[28] ASME Boiler & Pressure Vessel Code on Nondestructive Testing – Section V, Article 4, The American Society of Mechanical Engineers, July 2015.