به‌کارگیری شبکۀ عصبی برای پیش‌بینی موقعیت و راستای عیوب لوله در آزمون فراصوتی با امواج هدایت‌شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک دانشگاه شهید چمران اهواز

2 گروه مهندسی مکانیک، دانشگاه شهید چمران اهواز

چکیده

در این تحقیق، روشی بر اساس طبقه‌بندی و پیش‌بینی شبکه عصبی برای تشخیص موقعیت و راستای ترک در لوله‌ها ارائه شده است. به این منظور، ابتدا از روش اجزاء محدود برای مدل‌سازی انتشار موج و مدل‌سازی ترک در موقعیت و راستا‌های مختلف استفاده شده است. در این راستا از دو نوع موج تحریک هدایت شده طولی و پیچشی بهره گرفته شده است. سیگنال‌های بدست آمده به منظور فیلتر کردن نویز، کاهش ابعاد داده و محاسبه ویژگی‌های مناسب، پردازش شده‌اند. در پژوهش حاضر، اندازه‌گیری پژواک‌های بازتاب انجام شده و پنج ویژگی در شش سطح از تجزیه موجک گسسته سیگنال‌های خام، استخراج شده است. ویژگی‌های انتخاب شده از سیگنال‌ها، پردازش شده تا اندازه مدل شبکه عصبی بدون از دست دادن اطلاعات محدود شود. به همین منظور از روش الگوریتم کرم شب‌تاب استفاده شده و به یک شبکه عصبی مصنوعی که موقعیت و راستای ترک را پیش‌بینی می‌کند، تغذیه شده است. در این مطالعه، از شبکه‌های مرسوم پس انتشار چند لایه پرسپترون استفاده شده است. با توجه به نتایج به دست آمده مشاهده می‌شود که روش ارائه شده دقت خوبی را در پیش‌بینی موقعیت و راستای ترک نشان می-دهد و همچنین درصد خطاهای شبکه عصبی به کار رفته کمتر از 7% است.

کلیدواژه‌ها


عنوان مقاله [English]

Implementation of neural networks for prediction of location and orientation of pipe defects in guided wave ultrasonic testing

نویسندگان [English]

  • Amin Yaghootian 1
  • Laleh Fatahi 2
  • Siavash Tayebi 2
1 Department of Mechanical Engineering, Shahid Chamran University of Ahvaz
2 Department of Mechanical Engineering,, Shahid Chamran University of Ahvaz
چکیده [English]

In this research, a method based on the the artificial neural network is used to determine the location and orientation of cracks in pipes. For this purpose, first, the finite element method is used to model wave propagation and crack modeling in different locations and orientations. In this regard, two types of longitudinal and torsional guided waves are used to excite the structure. The obtained signals are processed in order to calculate the appropriate characteristics. To this end, the reflection echoes are also measured and five features are extracted at six levels from discrete wavelet decomposition of raw signals. Selected properties of the signals are processed to limit the size of the neural network model without losing information. To do so, the firefly algorithm method was used and fed to an artificial neural network that predicts the location and orientation of the crack. In this study, conventional multilayer perceptron diffusion networks have been used. According to the obtained results, it is observed that the proposed method shows good accuracy in predicting the location and orientation of the crack. Also, the percentage of neural network errors is less than 7%.

کلیدواژه‌ها [English]

  • Non-destructive test
  • wavelet transform
  • Feature Extraction
  • Firefly Algorithm
  • Artificial Neural Network
[1] S. Wang, S. Huang, W. Zhao, and Z. Wei, “3D modeling of circumferential SH guided waves in pipeline for axial cracking detection in ILI tools,” Ultrasonics, vol. 56, pp. 325–331, 2015.
[2] M. J. S. Lowe, D. N. Alleyne, and P. Cawley, “10.1016_S0041-624X(97)00038-3-Defect-detection-in-pipes-using-guided-waves.pdf,” vol. 36, pp. 147–154, 1998.
[3] R. Polikar, L. Udpa, S. S. Udpa, and T. Taylor, “Frequency invariant classification of ultrasonic weld inspection signals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 3, pp. 614–625, 1998.
[4] S. Liu, C. Du, J. Mou, L. Martua, J. Zhang, and F. L. Lewis, “Diagnosis of structural cracks using wavelet transform and neural networks,” NDT E Int., vol. 54, pp. 9–18, 2013.
[5] P. Rizzo, I. Bartoli, A. Marzani, and F. Lanza Di Scalea, “Defect classification in pipes by neural networks using multiple guided ultrasonic wave features extracted after wavelet processing,” J. Press. Vessel Technol. Trans. ASME, vol. 127, no. 3, pp. 294–303, 2005.
[6] P. Nazarko and L. Ziemianski, “Damage detection in aluminum and composite elements using neural networks for Lamb waves signal processing,” Eng. Fail. Anal., vol. 69, pp. 97–107, 2016.
[7] M. El Mountassir, S. Yaacoubi, J. Ragot, G. Mourot, and D. Maquin, “Feature selection techniques for identifying the most relevant damage indices in SHM using guided waves,” 8th Eur. Work. Struct. Heal. Monit. EWSHM 2016, vol. 2, no. September, pp. 1228–1235, 2016.
[8] M. Meng, Y. J. Chua, E. Wouterson, and C. P. K. Ong, “Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks,” Neurocomputing, vol. 257, no. 2017, pp. 128–135, 2017.
[9] F. C. Cruz, E. F. Simas Filho, M. C. S. Albuquerque, I. C. Silva, C. T. T. Farias, and L. L. Gouvêa, “Efficient feature selection for neural network based detection of flaws in steel welded joints using ultrasound testing,” Ultrasonics, vol. 73, pp. 1–8, 2017.
 
[10]        M. Islam, M. Sohaib, J. Kim, and J. M. Kim, “Crack classification of a pressure vessel using feature selection and deep learning methods,” Sensors (Switzerland), vol. 18, no. 12, 2018.
[11]        N. Munir, H. J. Kim, S. J. Song, and S. S. Kang, “Investigation of deep neural network with drop out for ultrasonic flaw classification in weldments,” J. Mech. Sci. Technol., vol. 32, no. 7, pp. 3073–3080, 2018.
[12]        A. Mokhtarizadeh, A. Yaghootian, A. Valipour, Detection of dimensions of axisymmetric surface defects located on the pipe using the first order symmetric torsional guided waves. NDT Technology, 2(7), 51-59, 2021.
[13]        G. Acciani, G. Brunetti, G. Fornarelli, and A. Giaquinto, “Angular and axial evaluation of superficial defects on non-accessible pipes by wavelet transform and neural network-based classification,” Ultrasonics, vol. 50, no. 1, pp. 13–25, 2010.
[14]         B. Cannas, F. Cau, A. Fanni, A. Montisci, P. Testoni, and M. Usai, “Neural NDT by means of reflected longitudinal and torsional waves modes in long and inacessible pipes,” WSEAS Trans. Syst., vol. 4, no. 11, pp. 2129–2137, 2005.