مروری بر روش‌های جدید پایش سلامت سازه‌ای راه‌ها از درون روسازی

نویسندگان

1 گروه راه و ترابری، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

2 مهندسی حمل و نقل، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در چند دهه‌ی اخیر، مسئله‌ی پایش سلامت روسازی توجه بسیاری از پژوهشگران را به خود جلب کرده و باعث پیشرفت‌ها و فناوری‌های جدیدی شده است. در این پژوهش ضمن بررسی مفهوم پایش، روش‌های موجود به‌منظور انجام پایش سلامت سازه‌ای روسازی‌ها دسته‌بندی شده است. تا به امروز دو رویکرد کلی پایش از سطح روسازی و پایش از درون روسازی برای ارزیابی سلامت راه‌ها استفاده شده است. روش نوین پایش از درون روسازی به دنبال ارائه‌ی راهکارهایی با هدف پایش مستمر سلامت راه است. این راهکارها متکی به تجهیز روسازی هستند؛ به این معنا که در طی فرایند راهسازی حسگرهایی در درون راه مدفون می‌شوند. بهره‌گیری از روش نوین پایش از درون روسازی، می‌تواند مزایای زیادی از لحاظ فنی و اقتصادی برای شبکه‌ی راه‌ها به ارمغان آورد؛ چراکه در مقایسه با روش‌ پایش از سطح روسازی، امکان نظارت بر تمام لایه‌های روسازی را به طور مجزا، به صورت مستمر و از راه دور و بدون ایجاد تداخل در جریان ترافیک ممکن می‌سازد. این رویکرد در راستای تحقق راه‌های هوشمند بوده و برخلاف اکثر روش‌های قدیمی، غیرمخرب است. به این منظور در این پژوهش مروری بر پژوهش‌های اخیر پیرامون روش پایش از درون روسازی به‌صورت دسته‌بندی‌شده به‌تفکیک حسگرهای مورد استفاده (حسگرهای الکترومغناطیس، فیبر نوری و بی‌سیم) به‌منظور انجام این شیوه از پایش صورت گرفته است. در نهایت پیشنهادهایی به‌منظور اجرای شیوه‌ی پایش از درون روسازی در ایران ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A review on road structural health monitoring novel methods inside the pavement

نویسندگان [English]

  • Pooyan Ayar 1
  • Mohammad Khabbazi Alavi 2
1 School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
2 Msc Student of Transportation Engineering, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In recent decades, the pavement health monitoring issue has attracted the attention of many researchers and has led to new advances and technologies. In this study, while examining the monitoring concept, the existing methods for monitoring the structural health of pavements have been categorized. To date, two general monitoring approaches from surface and inside the pavement have been used to assess their structural health. The new monitoring method using embedded equipment inside the pavement seeks to provide solutions aimed at continuous monitoring of structural health. These solutions rely on pavement instrumentation. This means that sensors are embedded inside the road during the road construction process. Utilizing monitoring methods inside the pavement can bring many technical and economic benefits to road networks. Compared to the pavement monitoring method from its surface, it can facilitate monitoring all pavement layers separately, continuously and remotely without interfering with traffic flow. This approach is in line with the realization of smart roads and, unlike most of the old methods, it is a non-destructive method. For this purpose, in this study, a review of recent researches on monitoring methods inside the pavement has been conducted. To this end, electromagnetic, fiber optic and wireless monitoring sensors have been evaluated. Finally, some suggestions have been proposed in order to utilize these monitoring techniques for Iranian road infrastructures.

کلیدواژه‌ها [English]

  • Pavement
  • Structural Health
  • In-depth Monitoring
  • Embedded Sensors
  • Optical fiber
[1] Xue, W., Wang, D., & Wang, L. (2012). A review and perspective about pavement monitoring. Int. J. Pavement Res. Technol, 5(5), 295-302.‏
[2] Alavi, A. H., Hasni, H., Lajnef, N., & Chatti, K. (2016). Continuous health monitoring of pavement systems using smart sensing technology. Construction and Building Materials, 114, 719-736.
[3] Kara De Maeijer, P., Luyckx, G., Vuye, C., Voet, E., Vanlanduit, S., Braspenninckx, J., ... & De Wolf, J. (2019). Fiber optics sensors in asphalt pavement: state-of-the-art review. Infrastructures, 4(2), 36.‏
[4] Barriera, M., Pouget, S., Lebental, B., & Rompu, J. V. (2020). In Situ Pavement Monitoring: A Review. Infrastructures, 5(2), 18.‏
[5] Sun, L., Zhao, H., Tu, H., & Tian, Y. (2018). The smart road: practice and concept. Engineering,
 4(4), 436-437.
[6] Yin, X., Huang, N., & Wang, Z. (2017). A numerical investigation into sand grain/slope bed collision. Powder technology, 314, 28-38.
[7] Xiong, H., Zhu, X., & Zhang, R. (2018). Energy recovery strategy numerical simulation for dual axle drive pure electric vehicle based on motor loss model and big data calculation. Complexity, 2018.
[8] Zhu, H. P., Yu, J., & Zhang, J. B. (2011). A summary review and advantages of vibration-based damage identification methods in structural health monitoring. Engineering mechanics, 28(2), 1-11.
[9] Wang, H. P., Xiang, P., & Jiang, L. Z. (2020). Optical fiber sensing technology for full-scale condition monitoring of pavement layers. Road Materials and Pavement Design21(5), 1258-1273.
[10] Ganji, M. R., Ghelmani, A., Golroo, A., & Sheikhzadeh, H. (2020). A Brief Review on the Application of Sound in Pavement Monitoring and Comparison of Tire/Road Noise Processing Methods for Pavement Macrotexture Assessment. Archives of Computational Methods in Engineering, 1-24.‏
[11] Li, X., & Goldberg, D. W. (2018). Toward a mobile crowdsensing system for road surface assessment. Computers, Environment and Urban Systems, 69, 51-62.‏
[12] Elbagalati, O., Elseifi, M., Gaspard, K., & Zhang, Z. (2018). Development of the pavement structural health index based on falling weight deflectometer testing. International Journal of Pavement
Engineering
, 19(1), 1-8.‏
[13] Fakhri, M., Dezfoulian, R. S., Golroo, A., & Makkiabadi, B. (2019). Developing an approach for measuring the intensity of cracking based on geospatial analysis using GIS and automated data collection system. International Journal of Pavement Engineering, 1-15.
‏[14] Ji, X., Chen, Y., Hou, Y., & Zhen, Y. (2019). Detecting concealed damage in asphalt pavement based on a composite lead zirconate titanate/polyvinylidene fluoride aggregate. Structural Control and Health Monitoring, 26(11), e2452.‏
[15] Ji, X., Hou, Y., Chen, Y., & Zhen, Y. (2019). Fabrication and performance of a self-powered damage-detection aggregate for asphalt pavement. Materials & Design, 179, 107890.‏
[16] Ji, X., Hou, Y., Chen, Y., & Zhen, Y. (2019). Attenuation of acoustic wave excited by piezoelectric aggregate in asphalt pavement and its application to monitor concealed cracks. Construction and Building Materials, 216, 58-67.‏
[17] Rhimi, M., Lajnef, N., Chatti, K., & Faridazar, F. (2012). A Self-powered Sensing System for Continuous Fatigue Monitoring of In-service Pavements. International Journal of Pavement Research & Technology, 5(5).
[18] Weinmann, T. L., Lewis, A. E., & Tayabji, S. D. (2004, September). Pavement sensors used at accelerated pavement test facilities. In Proceedings of the second international conference on accelerated pavement testing.‏
[19] Tabatabaee, N., & Sebaaly, P. (1990). State-of-the-art pavement instrumentation. Transportation Research Record, 1260, 246-255.‏
[20] Di Graziano, A., Marchetta, V., & Cafiso, S. (2020). Structural health monitoring of asphalt pavements using smart sensor networks: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition).‏
[21] Potter, J. F., Mayhew, H. C., & Mayo, A. P. (1969). Instrumentation of the Full-scale Experiment on A1 Trunk Road at Conington, Huntingdonshire. Rrl Reports, Road Research Lab/UK/.‏
[22] Sebaaly, P. E., Tabatabaee, N., Kulakowski, B., & Scullion, T. (1991). Instrumentation for flexible pavements-field performance of selected sensors. Federal Highway Administration, Washington, DC.‏
[23] Sebaaly, P. E., Tabatabaee, N., & Kulakowski, B. (1995). Evaluation of the Hall Effect sensor for pavement instrumentation. Journal of testing and evaluation, 23 (3), 189-195.‏
[24] Gonçalves, P. F., Ceratti, J. A. P., & Bica, A. D. (2003). The use of embedded stress cells for monitoring pavement performance. Geotechnical testing journal, 26 (4), 363-372.‏
[25] Huff, R., Berthelot, C., & Daku, B. (2005). Continuous primary dynamic pavement response system using piezoelectric axle sensors. Canadian journal of civil engineering, 32(1), 260-269.‏
[26] Xue, W., & Weaver, E. (2011). Pavement shear strain response to dual and wide-base tires. Transportation research record, 2225(1), 155-164.‏
[27] Lajnef, N., Rhimi, M., Chatti, K., Mhamdi, L., & Faridazar, F. (2011). Toward an integrated smart sensing system and data interpretation techniques for pavement fatigue monitoring. ComputerAided Civil and Infrastructure Engineering, 26(7), 513-523.‏
[28] Glisic, B., & Inaudi, D. (2008). Fibre optic methods for structural health monitoring. John Wiley & Sons.‏
[29] Du, Y., Sun, B., Li, J., & Zhang, W. (2019). Optical Fiber Sensing and Structural Health Monitoring Technology. Springer.‏
[30] Chapeleau, X., Blanc, J., Hornych, P., Gautier, J. L., & Carroget, J. J. J. O. C. S. H. M. (2017). Assessment of cracks detection in pavement by a distributed fiber optic sensing technology. Journal of Civil Structural Health Monitoring, 7(4), 459-470.
[31] Navarrete, M. C., & Bernabeu, E. (1994). Fibre-optic weigh-in-motion sensor. Sensors and Actuators A: Physical, 41(1-3), 110-113.‏
[32] Signore, J. M., & Roesler, J. R. (1995). Using fiber-optic sensing techniques to monitor behavior of transportation materials. Transportation research record, (1478), 37-43.‏
[33] Wang, J. N., & Tang, J. L. (2005). Using fiber Bragg grating sensors to monitor pavement structures. Transportation research record, 1913(1), 165-176.‏
[34] Doré, G., Duplain, G., & Pierre, P. (2007, June). Monitoring mechanical response of in service pavements using retrofitted fiber optic sensors. In Proc of the Intern. Conf. on the Advanced Charact. of Pavement and Soil Eng. Materials, Athens, Greece (pp. 883-891).
[35] Grellet, D., Doré, G., & Bilodeau, J. P. (2012). Comparative study on the impact of wide base tires and dual tires on the strains occurring within flexible pavements asphalt concrete surface course. Canadian Journal of Civil Engineering, 39(5), 526-535.
[36] Bilodeau, J. P., & Doré, G. (2012). Estimation of tensile strains at the bottom of asphalt concrete layers under wheel loading using deflection basins from falling weight deflectometer tests. Canadian Journal of Civil Engineering, 39(7), 771-778.
[37] Loizos, A., Plati, C., & Papavasiliou, V. (2013). Fiber optic sensors for assessing strains in cold in-place recycled pavements. International Journal of Pavement Engineering, 14(2), 125-133.
[38] Loizos, A., Papavasiliou, V., & Plati, C. (2016). Effectiveness of FWD to simulate traffic loading in recycled pavements. Journal of Performance of Constructed Facilities, 30(1), 04014193.
[39] Chapeleau, X., Blanc, J., Hornych, P., Gautier, J. L., & Carroget, J. (2014). Use of distributed fiber optic sensors to detect damage in a pavement. Introduction to Unmanned Aircraft Systems, 449-457.
[40] Garg, N., Bilodeau, J. P., & Doré, G. (2014). Experimental study of asphalt concrete strain distribution in flexible pavements at the national airport pavement test facility (No. P10095).
[41] Imai, M., Igarashi, Y., Shibata, M., & Miura, S. (2014). Experimental study on strain and deformation monitoring of asphalt structures using embedded fiber optic sensor. Journal of Civil Structural Health Monitoring, 4(3), 209-220.
[42] Zhou, Z., Liu, W., Huang, Y., Wang, H., Jianping, H., Huang, M., & Jinping, O. (2012). Optical fiber Bragg grating sensor assembly for 3D strain monitoring and its case study in highway pavement. Mechanical Systems and Signal Processing, 28, 36-49.‏
[43] Vegt, G. J. (2016). Verlicht asfalteren. Over de haalbaarheid van Fiber Bragg Grating sensoren in het asfaltverwerkingsproces (Bachelor's thesis, University of Twente).
[44] Kara De Maeijer, P., & Vuye, C. (2018). Fiber Bragg Grating Sensors in Three Asphalt Pavement Layers. Infrastructures, 3(2), 16.
[45] Meng, L., Wang, L., Hou, Y., & Yan, G. (2017). A research on low modulus distributed fiber optical sensor for pavement material strain monitoring. Sensors, 17 (10), 2386.‏
[46] Xiang, P., & Wang, H. (2018). Optical fibre-based sensors for distributed strain monitoring of asphalt pavements. International Journal of Pavement Engineering, 19(9), 842-850.‏
[47] Braunfelds, J., Senkans, U., Skels, P., Janeliukstis, R., Salgals, T., Redka, D., ... & Bobrovs, V. (2021). FBG-based sensing for structural health monitoring of road infrastructure. Journal of Sensors, 2021.‏
[48] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer networks, 38(4), 393-422.‏
[49] Alavi, A. H., Hasni, H., Lajnef, N., Chatti, K., & Faridazar, F. (2016). An intelligent structural damage detection approach based on self-powered wireless sensor data. Automation in Construction, 62, 24-44.‏
[50] Lynch, J. P., & Loh, K. J. (2006). A summary review of wireless sensors and sensor networks for structural health monitoring. Shock and Vibration
Digest
, 38(2), 91-130.‏
[51] Noel, A. B., Abdaoui, A., Elfouly, T., Ahmed, M. H., Badawy, A., & Shehata, M. S. (2017). Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 19(3), 1403-1423.‏
[52] Yun, C. B., & Min, J. (2011). Smart sensing, monitoring, and damage detection for civil infrastructures. KSCE Journal of Civil Engineering, 15 (1), 1-14.‏
[53] Bennett, R., Hayes-Gill, B., Crowe, J. A., Armitage, R., Rodgers, D., & Hendroff, A. (1999, May). Wireless monitoring of highways. In Smart Structures and Materials 1999: Smart Systems for Bridges, Structures, and Highways (Vol. 3671, pp. 173-182). International Society for Optics and Photonics.‏
[54] Alavi AH, Hasni H, Lajnef N, Chatti K. Continuous health monitoring of pavement systems using smart sensing technology. Construction and Building
Materials 2016;114:719–36.
[55] Fedele, R., Merenda, M., & Giammaria, F. (2018). Energy harvesting for IoT road monitoring systems. Instrumentation, Mesure, Metrologie, 17(4), 605.‏
[56] Long, H., Liu, Y., Wang, Y., Dick, R. P., & Yang, H. (2009, November). Battery allocation for wireless sensor network lifetime maximization under cost constraints. In 2009 IEEE/ACM International Conference on Computer-Aided Design-Digest of Technical Papers (pp. 705-712). IEEE.‏
[57] Lajnef, N., Chatti, K., Chakrabartty, S., Rhimi, M., & Sarkar, P. (2013). Smart pavement monitoring system (No. FHWA-HRT-12-072). United States. Federal Highway Administration.