ارزیابی خواص مکانیکی بتن قلیافعال بر اساس آزمون غیرمخرب امواج فراصوتی، تحت حرارت بالا

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی عمران، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران

چکیده

در این پژوهش آزمایشگاهی، یک طرح اختلاط از بتن معمولی حاوی سیمان پرتلند با عیار 500 کیلوگرم بر متر مکعب و یک طرح اختلاط از بتن قلیافعال بر‌ پایه سرباره کوره آهنگدازی ساخته شد. به منظور بررسی خواص مکانیکی، آزمون غیرمخرب تعیین سرعت ارتعاشات فراصوتی (اولتراسونیک) ‌ در بتن تحت دمای 21 و 600 درجه سانتی‌گراد در سن عمل‌آوری 90 روزه انجام گرفت. به منظور بررسی ریزساختاری بتن و راستی آزمایی نتایج آزمون فراصوتی، آزمون مقاومت فشاری و تصویر برداری میکروسکوپ الکترونی روبشی بر روی نمونه‌های بتنی انجام گرفت. نتایج حاصله حاکی از افت سرعت عبور ارتعاشات فراصوتی، پس از اعمال حرارت بالا (600 درجه سانتی‌گراد) در بتن بود، بطوریکه در بتن معمولی و بتن قلیافعال به ترتیب افت سرعت 79/44 و 58/40 درصدی در نتایج بعد و قبل از اعمال حرارت کسب گردید. در این راستا سرعت عبور ارتعاشات فراصوتی در بتن قلیافعال کمتر از بتن معمولی شد، بطوریکه در دمای 21 و 600 درجه سانتی‌گراد، درصد افت سرعت در بتن قلیافعال نسبت به بتن معمولی به ترتیب برابر با 48/10 و 66/3 درصد به دست آمد. در ادامه نتایج حاصل از آزمون مقاومت فشاری و تصاویر حاصل از میکروسکوپ الکترونی روبشی، در هماهنگی و همپوشانی با نتایح حاصل از آزمون تعیین سرعت عبور ارتعاشات فراصوتی در بتن تحت دمای 21 و 600 درجه سانتی‌گراد قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of mechanical properties of reinforced concrete based on non-destructive test of ultrasonic waves, Under high heat

نویسنده [English]

  • Mohammadhossein Mansourghanaei
Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran
چکیده [English]

In this laboratory study, a mixing design was made of ordinary concrete containing Portland cement with a grade of 500 kg/m3 and a mixing design was made of alkaline concrete based on slag from the composing furnace. In order to investigate the mechanical properties, a non-destructive test was performed to determine the velocity of ultrasonic vibrations in concrete at 21 and 600 °C at a 90-day curing age. In order to evaluate the microstructure of concrete and verify the results of ultrasonic test, compressive strength test and scanning electron microscopy imaging was performed on concrete samples. The results showed a decrease in the speed of ultrasonic vibrations after applying high temperature (600 °C) in concrete, so that in ordinary concrete and hard concrete, the deceleration rate was 44.79% and 40.58% in the results after and before, respectively. Obtained by applying heat. In this regard, the passage speed of ultrasonic vibrations in ferrous concrete was lower than ordinary concrete, so that at 21 and 600°C, the percentage of velocity drop in ferrous concrete compared to conventional concrete is equal to 10.48 and 3.66%, respectively. Was obtained. The results of the compressive strength test and the images obtained from the scanning electron microscope, in coordination and overlap with the results of the ultrasonic vibration test in concrete were subjected to 21 and 600°C.

کلیدواژه‌ها [English]

  • Alkaline alkaline concrete
  • Non-destructive ultrasonic test
  • High heat
  • Concrete microstructure
  • Hydrated gels
[1] Czechowska-Biskup, R., Rokita, B., Lotfy, S., Ulanski, P., & Rosiak, J. M. (2005). Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydrate Polymers60(2), 175-184.‏
[2] J Mason, T., Chemat, F., & Vinatoru, M. (2011). The extraction of natural products using ultrasound or microwaves. Current Organic Chemistry15(2), 237-247.‏
[3] Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M., Marto, A., & Khorami, M. (2018). Portland cement structure and its major oxides and fineness. Smart structures and systems, 22(2), 425-432.
[4]           Nuaklong, P., Sata, V., & Chindaprasirt, P. (2016). Influence of recycled aggregate on fly ash geopolymer concrete properties. Journal of Cleaner Production112, 2300-2307.‏
[5] Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and building materials85, 78-90.‏
[6]           Siddique, R., & Kaur, D. (2012). Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures. Journal of Advanced Research3(1), 45-51.‏
[7]           Yüksel, İ., Siddique, R., & Özkan, Ö. (2011). Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement. Construction and building materials25(2), 967-972.‏
[8] Allahverdi, A. L. I., Kani, E. N., & Yazdanipour, M. (2011). Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceramics-Silikáty55(1), 68-78.‏
[9] Zhuguo, L. I., & Sha, L. I. (2018). Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete. Construction and Building Materials163, 668-680.‏
[10] Mallikarjuna Rao, G., Gunneswara Rao, T. D., Siva Nagi Reddy, M., & Rama Seshu, D. (2019). A study on the strength and performance of geopolymer concrete subjected to elevated temperatures. In Recent Advances in Structural Engineering, Volume 1 (pp. 869-889). Springer, Singapore.‏
[11] Jafari Nadoushan, M., Ramezanianpor, A. (2019). Mechanical Properties of Alkali Activated Slag Pastes and Determination of Optimum Values of Effective Factors. Amirkabir Journal of Civil Engineering, 50(6), 1043-1052. doi: 10.22060/ceej.2017.11113.4977
[12] Mansourghanaei, M., Biklaryan, M., Mardookhpour, A. (2022). Experimental Study of Compressive Strength of Geopolymer Concrete Based on XRF and SEM Analysis. Analysis of Structure and Earthquake, 18(4), 55-64. doi: 10.30495/civil.2022.689960
[13] Caetano, H., Ferreira, G., Rodrigues, J. P. C., & Pimienta, P. (2019). Effect of the high temperatures on the microstructure and compressive strength of high strength fibre concretes. Construction and Building Materials199, 717-736.‏
[14] Bakhtiyari, S., Allahverdi, A., Rais-Ghasemi, M., Zarrabi, B. A., & Parhizkar, T. (2011). Self-compacting concrete containing different powders at elevated temperatures–Mechanical properties and changes in the phase composition of the paste. Thermochimica acta514(1-2), 74-81.‏
[15] Amiri, M., & Aryanpoor, M. (2019). The Effects of High Temperatures on Concrete Performance based on Nanostructural Changes in Calcium Silicate Hydrate (CSH). Concrete Research12(4), 69-80.‏
[16] Yunsheng, Z., Wei, S., & Zongjin, L. (2010). Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science47(3-4), 271-275.‏
[17] Mansourghanaei, M., biklaryan, M., Mardookhpour, A. (2021). Evaluate Effect of Temperature On mechanical properties of Geopolymer Concretes blast furnace slag by using nanosilica and polyolefin fiber. Journal of Structural and Construction Engineering, 8(10), 334-352. doi: 10.22065/jsce.2021.277150.2382
[18] M. Nikbin, I., Mehdipour, S., Dezhampanah, S., Mohammadi, R., Mohebbi, R., Habibi, H., & Sadrmomtazi, A. (2020). Effect of high temperature on mechanical and gamma ray shielding properties of. Radiation Physics and Chemistry, 174.
[19] Sreenivasulu, C., Guru Jawahar, J., & Sashidhar, C. (2018). Predicting compressive strength of geopolymer concrete using NDT techniques. Asian Journal of Civil Engineering19(4), 513-525.‏
[20] ASTM C989/C989M-18a. (2018). Standard specification for slag cement for use in concrete and mortars. ASTM International.‏
[21] ASTM, C. (2003). Standard specification for concrete aggregates. Philadelphia, PA: American Society for Testing and Materials.‏
[22] Pilehvar, S., Cao, V. D., Szczotok, A. M., Carmona, M., Valentini, L., Lanzón, M., ... & Kjøniksen, A. L. (2018). Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials. Construction and Building Materials173, 28-39.‏
[23] ISIRI 389, “standards and the specification for the PORTLAND CEMENT”. (2020). Institute of Standards and Industrial Research of Iran.
 [24] Deb, P., Nath, P., & Sarker, P. (2015). Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature. Procedia Engineering, 125, 594-600.
[25] Mehta, P. K., & Monteiro, P. J. (2014). Concrete: microstructure, properties, and materials. McGraw-Hill Education.
[26] Kong, D. L., & Sanjayan, J. G. (2010). Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and concrete research40(2), 334-339.‏
[27] Ghasemzadeh Mousavinejad, S. H., & Rudy, B. (2020). Study of Ultrasonic Pulse Wave Velocity in Plain Concrete Using Different Water to Cement Ratio at Different Stress Level. Journal of Civil and Environmental Engineering50(100), 37-43.‏
[28] Ren, W., Xu, J., & Bai, E. (2016). Strength and ultrasonic characteristics of alkali-activated fly ash-slag geopolymer concrete after exposure to elevated temperatures. Journal of Materials in Civil Engineering28(2), 04015124.‏
[29] "IS 13311-1 ): Method of Non-destructive testing ofconcret, Part 1: Ultrasonic pulse velocity [CED 2: Cement and Concrete]," 1992.
[30] Whitehurst, E. A. (1951, February). Soniscope tests concrete structures. In Journal Proceedings (Vol. 47, No. 2, pp. 433-444).‏
[31] Kwan, W. H., Ramli, M., Kam, K. J., & Sulieman, M. Z. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials26(1), 565-573.‏
[32] Hongjian, D., Suhuan, D., & Liu, X. (2014). Durability performances of concrete with nano-silica. Construction and building materials, 73, 705-712.
[33] Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., ... & Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production125, 253-267.‏
[34] Provis, J. L., & Van Deventer, J. S. (2009). Introduction to geopolymers. In Geopolymers (pp. 1-11). Woodhead Publishing.‏
[35] Brindley, G. W. (1975). Thermal transformations of clays and layer silicates. In Proceedings of the international clay conference (pp. 119-129). Applied Publishers Wilmette, IL