بهبود نتایج آزمون غیرمخرب دمانگاری برای تشخیص عیوب دایروی در فلزات پوشش دهی شده به کمک روش تحلیل مولفه اصلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشکدگان فنی، دانشگاه تهران، تهران ایران

2 دانشیار دانشکده مهندسی مکانیک دانشگاه تهران_

3 _Associate Professor, University of Tehran

چکیده

پوشش دهی فلزات به عنوان تکنیکی برای افزایش مقاومت به خوردگی قطعات صنعتی، امری بسیار کاربردی و متداول در صنایع مختلف بویژه صنایع نفت و گاز، صنایع پتروشیمی و صنعت دریایی می باشد. تشخیص خوردگی در فلزات پوشش‎دهی شده یکی از چالش‎های اساسی در زمینه آزمون‎های غیرمخرب است. در این پژوهش 20 عدد سوراخ کف تخت (FBH) با قطرهای 10، 8، 6، 4 و 2 میلی‎متر و ضخامت فلز باقیمانده بین 5/0 تا 2 میلی‎متر بر روی قطعه فولادی St37 با پوشش پلیمری اپوکسی به‎منظور شبیه‎سازی عیب خوردگی ایجاد شد. از آزمون دمانگاری تحریک پله‎ای (SHT) برای تشخیص عیب خوردگی استفاده شد. فیلتر میانه و فیلتر میانگین بر روی تصاویر دمانگاری برای کاهش نویز و هموارسازی تصاویر اعمال شدند. روش تحلیل مولفه اصلی (PCA) برای پردازش سیگنال‎های دمانگاری و بهبود قابلیت تشخیص عیوب بر روی داده‎های دمانگاری اعمال شد. نتایج نشان داد که پس از اعمال روش‎‎های پردازش سیگنال، تعداد عیوب قابل تشخیص از 12 سوراخ به 14 سوراخ افزایش یافت. همچنین نسبت سیگنال به نویز (SNR) بیش از 4 برابر افزایش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Improving the nondestructive thermography inspection results for detection of circular defects in coated metals using principal component analysis

نویسنده [English]

  • Keyhan Nategh 1
1 MSc Student, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
2
3
چکیده [English]

Coating metals as a technique to increase the corrosion resistance of industrial parts is very practical and common in various industries, especially oil and gas, petrochemical and marine industries. Corrosion characterization in coated metals is a major challenge in the field of Non-destructive testing (NDT). In this work, 20 flat bottom holes (FBH) with diameters of 10, 8, 6, 4, 2 mm were drilled to distances from the test piece surface ranging between 0.5 and 2 mm on the St37 steel plate with epoxy coating simulate corrosion defect. Step heating thermography (SHT) has been applied to evaluate corrosion defects. Median filter and Gaussian low-pass filter are used for noise reduction and smoothing the thermal images. Principal component analysis (PCA) has been applied to raw thermal images to process thermographic signals and improve the defect detection capability. Results showed that after applying signal processing methods, the number of the detected defects increased from 12 to 14 holes. Also the signal-to-noise ratio (SNR) has more than quadrupled.

کلیدواژه‌ها [English]

  • Non-Destructive Testing
  • Thermography
  • Coated metals
  • PCT
  • NDT
[1] Mezghani, S., et al. “Evaluation of heterogeneity of paint coating on metal substrate using laser infrared thermography and eddy current.” Evaluation 1 (2015): 20665.
[2] Ming-Xuan, Li, Wang Xiao-Min, and Mao Jie. “Thickness measurement of a film on a substrate by low-frequency ultrasound.” Chinese Physics Letters 21.5 (2004): 870.
[3] Chandler, K., and R. E. Mansford. “MEASUREMENT OF THICKNESS OF SPRAYED METAL COATINGS ON STEEL.” Proceedings of the Institution of Civil Engineers 30.1 (1965): 131-146.
[4] Koleske, Joseph V. “Paint and coating testing manual: of the Gardner-Sward handbook.” Philadelphia, PA, USA:: ASTM, 1995.
[5] Dodd, C. V., and W. A. Simpson Jr. THICKNESS MEASUREMENTS USING EDDY-CURRENT TECHNIQUES. No. ORNL-TM-3712. Oak Ridge National Lab., Tenn., 1972.
[6] Kurabayashi, Toru, Shinich Yodokawa, and Satoru Kosaka. “Terahertz imaging through paint layers.” 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. IEEE, 2012.
[7] Su, Ke, et al. “Terahertz sensor for non-contact thickness measurement of car paints.” 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2013.
[8] Izutani, Yusuke, Motonobu Akagi, and Keiko Kitagishi. “Measurements of paint thickness of automobiles by using THz time-domain spectroscopy.” 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. IEEE, 2012.
[9] He, Yunze, et al. “An investigation into eddy current pulsed thermography for detection of corrosion blister.” Corrosion Science 78 (2014): 1-6.
[10] meshkizadeh, P., Rezaee Hajideh, M., Farahani, M., Heidari-Rarani, M. (2021). Thermal signal reconstruction and employment of K clustering method for inspection of additive manufactured polymer parts. NDT Technology, 2(7), 60-69.
[11] Kolagar, A., Cheraghzadeh, M., Akbari, D., Farahani, M. (2021). Nondestructive Evaluation of Gas Turbine Blade Cooling Holes Blockage by Thermography. NDT Technology, 2(6), 46-52.
[12] Meshkizadeh, P., Farahani, M., Rezaee Hajideh, M., Heidari-Rarani, M. (2020). Implementing Thermal Image Processing Techniques for Enhancing the Detectability of Defects in Thermography of Additive Manufacturing Components. NDT Technology, 2(6), 36-45.
[13] Khoshkbary, R., Farahani, M., Safarabadi, M., Asghari, S. (2019). Using of Modulated Thermography for Nondestructive Testing of Polymer Plates. NDT Technology, 2(4), 38-45.
[14] Alireza Ahmadi; Mohammadreza Farahani; Amirreza Ardebili. "Applying pulse thermography technique for corrosion defect evaluation on the steel plates". Iranian Journal of Manufacturing Engineering, 7, 5, 2020, 24-32.
[15] Ardebili A, Farahani M. Identification of Delamination Defects in Metal-Composite Shells Using Pulse Thermography. Modares Mechanical Engineering. 2020; 20 (9).
[16] Kaplan, Herbert. Practical applications of infrared thermal sensing and imaging equipment. Vol. 75. SPIE press, 2007.
[17] Maldague, Xavier. “Theory and practice of infrared technology for nondestructive testing.” (2001).
[18] Moore, P. O., and X. Maldague. “NDT Handbook on Infrared technology ASNT Handbook Series.” (2001).
[19] Maldague, Xavier PV. “Introduction to NDT by active infrared  thermography.” Materials evaluation 60.9 (2002): 1060-1073.
[20] Ardebili, A., Farahani, M., Asghari, S. (2020). Thermography with Radiation Excitation for Non-Destructive Evaluation of Composite and Sheet Metal. NDT Technology, 2(5), 3-13.
 [21] Osiander, Robert, and Jane WM Spicer. “Time-resolved infrared radiometry with step heating. A review.” Revue Générale de Thermique 37.8 (1998): 680-692.
[22] Badghaish, Adel A., and David C. Fleming. “Non-destructive inspection of composites using step heating thermography.” Journal of composite materials 42.13 (2008): 1337-1357.
[23] Balageas, Daniel L., and Jean-Michel Roche. “Common tools for quantitative time-resolved pulse and step-heating thermography–part I: theoretical basis.” Quantitative InfraRed Thermography Journal 11.1 (2014): 43-56.
[24] Roche, Jean-Michel, and Daniel L. Balageas. “Common tools for quantitative pulse and step-heating thermography– part II: experimental investigation.  “Quantitative InfraRed Thermography Journal 12.1 (2015): 1-23.
[25] Almond, Darryl P., Stefano L. Angioni, and Simon G. Pickering. “Long pulse excitation thermographic non-destructive evaluation.” NDT & E International 87 (2017): 7-14.
[26] Gonzalez, Rafael C. Digital image processing. Pearson education india, 2009.
[27] Maldague, Xavier. “Theory and practice of infrared technology for nondestructive testing.” (2001).
[28] Rajic, Nikolas. “Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures.” Composite structures 58.4 (2002): 521-528.
[29] Rajic, Nikolas. Principal component thermography. Defence Science and Technology Organisation Victoria (Australia) Aeronautical and Maritime Research Lab, 2002.
[30] Panella, F. W., A. Pirinu, and V. Dattoma. "A brief review and advances of thermographic image-processing methods for irt inspection: a case of study on gfrp plate." Experimental Techniques 45.4 (2021): 429-443.