کیفیت سنجی غیرمخرب میوه سیب با استفاده از امواج صوتی، ارتعاشی و شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فنی کشاورزی پردیس ابوریحان دانشگاه تهران- پاکدشت-ایران

2 دانشیار گروه فنی کشاورزی- پردیس ابوریحان- دانشگاه تهران

3 گروه فنی کشاورزی پردیس ابوریحان دانشگاه تهران

چکیده

در این پژوهش ازروش پاسخ صوتی و ارتعاشی برای تخمین میزان سفتی سیب به صورت غیرمخرب استفاده شد. سیب های رقم گالا در دو دمای صفر و 20 درجه سلسیوس به مدت 9 و 6 هفته نگهداری شدند و در طول دوره انبارمانی هر هفته مورد آزمایش پاسخ ضربه صوتی قرار گرفتند. نمونه ها در طی آزمایش برروی دستگاه مخصوص که برای این آزمایش طراحی و ساخته شده قرار گرفته و با یک ضربه ملایم تحریک شدند. صدا و ارتعاش ناشی از ضربه توسط میکروفون و شتاب سنج دریافت شده و به صورت سیگنال های آنالوگ به کارت صدای رایانه منتقل و سپس تبدیل به سیگنال های دیجیتال شدند. سیگنال های دیجیتال توسط تبدیل فوریه در نرم افزار متلب از حوزه زمان به حوزه فرکانس تبدیل شدند. فرکانس های غالب سیگنال های صوتی و ارتعاشی استخراج شده و شاخص های سفتی از روابط مخصوص بدست آمد. نتایج آزمون های صوتی و ارتعاشی با نتایج آزمون نفوذسنجی مقایسه شد. ضریب همبستگی میان سفتی پانچ و شاخص سفتی بیش از 0.92 بودکه در سطح احتمال %1 معنی دار بود. همچنین فرکانس های غالب صوتی و ارتعاشی و جرم نمونه ها به عنوان سه ویژگی به صورت تکی، دوتایی و سه تایی با استفاده از شبکه عصبی مصنوعی برای تخمین عمر انبارمانی سیب مورداستفاده قرار گرفت. عمر انبارمانی در بازه های زمانی یک، دو و سه هفته ای تخمین زده شد و نتایج ترکیب دوتایی و سه تایی در حالت های مختلف از %9 تا%30 دقت طبقه بندی ویژگیهای تکی را افزایش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Nondestructive apple quality assessment using acoustic-vibrational response and artificial neural network

نویسندگان [English]

  • Zahed Fathizadeh 1
  • Mohammad Aboonajmi 2
  • Seyyed reza Hasanbeigi 3
1 Department of Agrotechnology, Abouraihan Campus, University of Tehran, Tehran, Iran
2 Faculty member- Agrotechnology Dept-University of Tehran
3 Department of Agrotechnology, Abouraihan Campus, University of Tehran, Tehran, Iran
چکیده [English]

In this study, acoustic and vibration response methods were used to non-destructively estimate the firmness of apples. Gala apples were stored at 0 and 20 ° C for 9 and 6 weeks and were tested for acoustic response every week during storage. During the test, the samples were placed on a special device designed and made for this test and stimulated with a gentle tap. Impact sound and vibration were received by the microphone and accelerometer and transmitted as analog signals to the computer sound card and then converted to digital signals. Digital signals were converted from time domain to frequency domain by Fourier transform in MATLAB software. The dominant frequencies of the sound and vibration signals were extracted and the firmness indices were obtained from special equations. The results of acoustic and vibration tests were compared with the results of puncture test. The correlation coefficient between puncture firmness and firmness index was more than 0.92, which was significant at the probability level of 1%. Also, the dominant acoustic and vibrational frequencies and mass of the samples were used as three features as single, binary and ternary using artificial neural network to estimate the shelf life of apples. The shelflife was estimated at one, two and three week intervals and the results of fusion of binary and ternary in different modes increased from 9% to 30% the accuracy of classification of individual features.

کلیدواژه‌ها [English]

  • Nondestructive testing
  • Acoustic response
  • Apple Firmness
  • Apple quality assessment
[1]           L. Chen and U. L. Opara, “Texture measurement approaches in fresh and processed foods - A review,” Food Res. Int., vol. 51, no. 2, pp. 823–835, 2013, doi: 10.1016/j.foodres.2013.01.046.
[2]           Z. Fathizadeh, M. Aboonajmi, and S. R. H. Beygi, “Nondestructive firmness prediction of apple fruit using acoustic vibration response,” Sci. Hortic., vol. 262, no. November 2019, p. 109073, 2020, doi: 10.1016/j.scienta.2019.109073.
[3]           M. Aboonajmi, M. Jahangiri, and S. R. Hassan-Beygi, “A Review on Application of Acoustic Analysis in Quality Evaluation of Agro-food Products,” J. Food Process. Preserv., vol. 39, no. 6, pp. 3175–3188, 2015, doi: 10.1111/jfpp.12444.
[4]           H. Chen, “Analysis of the acoustic impulse resonance of apples for nondestructive estimation of fruit quality,” Katholieke Univ. Leuven, 1993. [Online]. Available: http://agris.fao.org/agris-search/search.do?recordID=BE9400257
[5]           H. Chen, J. D. Baerdemaeker, and F. Vervaeke, “Acoustic impulse response of apples for monitoring texture changes after harvest,” 1992.
[6]           S. Schotte, N. D. Belie, and J. D. Baerdemaeker, “Acoustic impulse-response technique for evaluation and modelling of firmness of tomato fruit,” Postharvest Biol. Technol., vol. 17, no. 2, pp. 105–115, 1999, doi: 10.1016/S0925-5214(99)00041-1.
[7]           N. Muramatsu, N. Sakurai, R. Yamamoto, and D. J. Nevins, “Nondestructive acoustic measurement of firmness for nectarines, apricots, plums, and tomatoes,” HortScience, vol. 31, no. 7, pp. 1199–1202, 1996.
[8]           B. Diezma-Iglesias, C. Valero, F. J. García-Ramos, and M. Ruiz-Altisent, “Monitoring of firmness evolution of peaches during storage by combining acoustic and impact methods,” J. Food Eng., vol. 77, no. 4, pp. 926–935, 2006, doi: 10.1016/j.jfoodeng.2005.08.021.
[9]           W. Zhang, D. Cui, and Y. Ying, “Nondestructive measurement of pear texture by acoustic vibration method,” Postharvest Biol. Technol., vol. 96, pp. 99–105, 2014, doi: 10.1016/j.postharvbio.2014.05.006.
[10]         F. Khoshnam, S. R. B. H. Beygi, M. Namjoo, and M. Doroozi, “The effect of acoustic system variables on sound signals of Melon varieties,” J. Agric. Mach., 2015.
[11]         F. Khoshnam, M. Namjoo, and H. Golbakhshi, “Acoustic Testing for Melon Fruit Ripeness Evaluation during Diff erent Stages of Ripening,” Agric. Conspec. Sci. Cus, vol. 80, no. 4, pp. 197–204, 2015.
[12]         M. Taniwaki, M. Tohro, and N. Sakurai, “Measurement of ripening speed and determination of the optimum ripeness of melons by a nondestructive acoustic vibration method,” Postharvest Biol. Technol., vol. 56, no. 1, pp. 101–103, 2010, doi: 10.1016/j.postharvbio.2009.11.007.
[13]         J. Mao, Y. Yu, X. Rao, and J. Wang, “Firmness prediction and modeling by optimizing acoustic device for watermelons,” J. Food Eng., vol. 168, pp. 1–6, 2016, doi: 10.1016/j.jfoodeng.2015.07.009.
[14]         A. Haiati, M. H. Raofat, S. Kamgar, and F. Jahani, “Feasability of using electrical capacitance for determining the fruit ripeness of apple,” Iran. J. Biosyst. Eng., vol. 49, no. 2, pp. 195–203, 2018, doi: 10.22059/ijbse.2018.218246.664861.
[15]         J. R. Cooke, “An Interpretation of the Resonant Behavior of Intact Fruits and Vegetables,” Trans. ASAE, vol. 15, no. 6, pp. 1075–1080, 1972, doi: 10.13031/2013.38074.
[16]         ASAE Standards, Compression test of food materials of convex shape. 2008.
[17]         F. Castanedo, “A review of data fusion techniques,” ScientificWorldJournal, vol. 2013, p. 704504, 2013, doi: 10.1155/2013/704504.
[18]         Z. Fathizadeh, M. Aboonajmi, and S. R. Hassan-Beygi, “Design, fabrication and test of integrated acoustic-vibration Fruit Texture Analyzer,” Iran. J. Biosyst. Eng., vol. 51, no. 2, pp. 295–304, 2020, 10.22059/ijbse.2020.286315.665215.
[19]         Z. Fathizadeh, M. Aboonajmi, and S. R. Hassan Beygi, “Classification of apples based on the shelf life using ANN and data fusion,” Food Anal. Methods, vol. 13, no. 12, 2020, doi: 10.1007/s12161-020-01913-1.
[20]         M. Lashgari, A. Imanmehr, and H. Tavakoli, “Fusion of acoustic sensing and deep learning techniques for apple mealiness detection,” J. Food Sci. Technol., Jan. 2020, doi: 10.1007/s13197-020-04259-y.
[21]         H. Li, P. Pidakala, D. Billing, and J. Burdon, “Kiwifruit firmness: Measurement by penetrometer and non-destructive devices,” Postharvest Biol. Technol., vol. 120, pp. 127–137, 2016, doi: 10.1016/j.postharvbio.2016.06.007.
[22]       M. Valente, R. Leardi, G. Self, G. Luciano, and J. P. Pain, “Multivariate calibration of mango firmness using vis/NIR spectroscopy and acoustic impulse method,” J. Food Eng., vol. 94, no. 1, pp. 7–13, Sep. 2009, doi: 10.1016/j.jfoodeng.2009.02.020.