آزمون غیرمخرب اتصالات جوشی با استفاده از روش دمانگاری فروسرخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده ی مهندسی مکانیک، دانشکدگان فنی، دانشگاه تهران، تهران

2 دانشیار دانشکده مهندسی مکانیک دانشگاه تهران_

3 _Associate Professor, University of Tehran

چکیده

همواره یکی از مهم ترین و پرچالش ترین فرایند های تولید قطعات صنعتی، فرایند ایجاد اتصالات مختلف از جمله اتصال دائمی با روش جوشکاری بوده است. با توجه به حساس بودن اتصالات جوشکاری شده از نظر عیوب و ترک خوردگی ناشی از فرایند، بررسی صحت، دقت و سلامت جوش ایجاد شده یکی از مهم ترین دغدغه های پژوهش گران و صنعتگران است. به همین دلیل توسعه ی روش های غیرمخرب بررسی صحت و کیفت اتصالات ایجاد شده توسط فرایند جوشکاری، در سال های اخیر رشد فزاینده ای داشته است. اما همواره هر یک از این روش ها محدودیت های خاصی در بررسی قطعات جوش داده شده نشان داده اند. از جمله ی این محدودیت ها نیاز به سرد شدن قطعه پیش از فرایند بررسی و نیاز به تماس مستقیم با قطعه است. روش دمانگاری فروسرخ به عنوان یکی از روش های بررسی غیرمخرب پیشرفته، در سال های اخیر در بررسی اتصالات جوشی، به دلیل مزایای بسیار کاربرد زیادی پیدا کرده است. از جمله مزایای روش دمانگاری فروسرخ می توان به غیر تماسی بودن، برخط بودن و توانایی بررسی سریع سطح بسیار بزرگ اشاره کرد. همچنین این فرایند در هنگام کار قطعه در مجموعه ی سرهم بندی شده نیز می تواند سلامت آن را در طول عمر کاری بررسی کند. این ویژگی های منحصر به فرد، روش دمانگاری فروسرخ را به یک روش با پتانسیل بسیار بالا در بررسی، کنترل فرایند و اتوماسیون فرایند جوشکاری تبدیل کرده است. به علاوه⸲ توانایی همگام سازی شدن با روش های هوش مصنوعی، یادگیری ماشین، یادگیری عمیق و پردازش سیگنال و تصویر پتانسیل این روش را برای کاربرد هرچه بیشتر در صنایع نوین در آینده ای نه چندان دور نشان داده است. همچنین زمینه های پژوهشی در این حوزه بسیار دست نخورده است و خلا های تحقیقاتی بسیاری در این زمینه احساس می شود. در پژوهش پیش رو با ارائه ی یک مرور کلی در خصوص کلیات و اصول دمانگاری فروسرخ، سعی در ایجاد یک پیش زمینه ی مناسب در خصوص این فرایند شده است. همچنین کاربرد های روش دمانگاری فروسرخ در فرایند جوش کاری به خصوص در بازرسی های غیر مخرب بررسی شده است که در آن روش های مختلف دما نگاری فروسرخ در بررسی های غیر مخرب بیان و توضیح داده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Non-Destructive Testing of the Welded Joints Using Infrared Thermography Technique

نویسندگان [English]

  • Abbas Bayati 1
  • Mohammadreza Farahani 2 3
1 1. School of Mechanical engineering, College of Engineering, University of Tehran
2 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
3
چکیده [English]

One of the most important and challenging processes of manufacturing industrial parts has always been the process of creating various joints, including permanent joints by welding method. Considering the sensitivity of the welded joints in terms of defects and cracks caused by the process, checking the accuracy, precision and health of the created weld is one of the most important concerns of researchers and craftsmen. For this reason, the development of non-destructive methods to check the integrity and quality of the joints created by the welding process has been increasing in recent years. But each of these methods have always shown certain limitations in evaluation welded parts. Among these limitations is the need to cool down the part before the inspection process and the need for direct contact with the part. The infrared thermography method, as one of the advanced non-destructive inspection methods, has been widely used in the inspection of welded joints in recent years due to its many advantages. Among the advantages of the infrared thermography, it can be mentioned that it is non-contact, online, and has the ability to quickly evaluate a very large area of the part. Also, this process can check the health of the part during its working life in an assembled set. These unique features have turned the infrared thermography method into a method with a very high potential in the testing, process control and automation of the welding process .In addition, the ability to synchronize with the methods of artificial intelligence, machine learning, deep learning and signal and image processing has shown the potential of this method to be used more and more in modern industries in the future. Also, the research fields in this area are very untouched and many research gaps are felt in this field. In the upcoming research, an attempt has been made to create a suitable background for this process by presenting an overview of the principles of infrared thermography. Also, the applications of infrared thermography in the welding process, especially in non-destructive inspections, have been investigated, in which different methods of infrared thermography in non-destructive inspections have been described and explained.

کلیدواژه‌ها [English]

  • Infrared Thermography
  • Non-Destructive Evaluation
  • Welded Joints
  • Weld Inspection
[1] Meola, C., Carlomagno, G. M., Squillace, A., & Giorleo, G. (2004). The use of infrared thermography for nondestructive evaluation of joints. Infrared physics & technology, 46(1-2), 93-99.
[2] Messler Jr, R.W. (2008). Principles of welding: processes, physics, chemistry, and metallurgy. John Wiley & Sons.
[3] Lippold, J.C. (2014). Welding metallurgy and weldability. John Wiley & Sons.
[4] Gao, P., Wang, C., Li, Y., & Cong, Z. (2015). Electromagnetic and eddy current NDT in weld inspection: A review. Insight-Non-Destructive Testing and Condition Monitoring, 57(6), 337-345.
[5] France, E. (2019). The alexander L. Kielland disaster revisited: A review by an experienced welding engineer of the catastrophic north sea platform collapse. Journal of Failure Analysis and Prevention, 19 (4), 875-881.
[6] Helal, J., M. Sofi, and P. Mendis. (2015). Non-destructive testing of concrete: A review of methods. Electronic Journal of Structural Engineering, 14 (1), 97-105.
[7] Deepak, J. R., Raja, V. B., Srikanth, D., Surendran, H., & Nickolas, M. M. (2021). Non-destructive testing (NDT) techniques for low carbon steel welded joints: A review and experimental study. Materials Today: Proceedings, 44, 3732-3737.
[8] Boaretto, N. and T.M. Centeno. (2017). Automated detection of welding defects in pipelines from radiographic images DWDI. Ndt & E International, 86, 7-13.
[9] Almeida, G., Gonzalez, J., Rosado, L., Vilaça, P., & Santos, T. G. (2013). Advances in NDT and materials characterization by eddy currents. Procedia Cirp, 7, 359-364.
[10] Zolfaghari, A., A. Zolfaghari, and F. Kolahan. (2018) Reliability and sensitivity of magnetic particle nondestructive testing in detecting the surface cracks of welded components. Nondestructive Testing and Evaluation, 33 (3), 290-300.
[11] Reddy, K.A. (2017). Non-destructive testing, evaluation of stainless steel materials. Materials Today: Proceedings, 4 (8), 7302-7312.
[12] Amiri, N., Farrahi, G. H., Kashyzadeh, K. R., & Chizari, M. (2020). Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints. Journal of Manufacturing Processes, 52, 26-34.
[13] Xu, Z., M. Wu, and W. Fan. (2021). Sparse-based defect detection of weld feature guided waves with a fusion of shear wave characteristics. Measurement, 174, 109018.
[14] Li, W., Z. Zhou, and Y. Li (2019). Inspection of butt welds for complex surface parts using ultrasonic phased array. Ultrasonics, 96, 75-82.
[15] Dorafshan, S., M. Maguire, and W. Collins. (2018). Infrared thermography for weld inspection: feasibility and application. Infrastructures, 3 (4), 45.
[16] Lhémery, A., Calmon, P., Lecœur-Taıbi, I., Raillon, R., & Paradis, L. (2000). Modeling tools for ultrasonic inspection of welds. NDT & E International, 33(7), 499-513.
[17] Sudhagar, S., M. Sakthivel, and S.A.A. Daniel (2020). Application of image processing to radiographic image for quantitative assessment of friction stir welding quality of aluminium 2024 alloy. Measurement, 152, 107294.
[18] Vasilev, M., MacLeod, C., Galbraith, W., Javadi, Y., Foster, E., Dobie, G., ... & Gachagan, A. (2021). Non-contact in-process ultrasonic screening of thin fusion welded joints. Journal of Manufacturing Processes, 64, 445-454.
[19] Meshkizadeh, P. and M. Farahani. (2022). Developing effective thermal signal processing to improve thermographic non-destructive inspection of metallic components. Nondestructive Testing and Evaluation, 37 (4), 367-385.
[20] Meshkizadeh, P., Farahani, M., Rezaee Hajideh, M., & Heidari-Rarani, M. (2020). Implementing thermal image processing techniques for enhancing the detectability of defects in thermography of additive manufacturing components. NDT Technology, 2(6), 36-45.
[21] Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., & Bulnes, F. G. (2014). Infrared thermography for temperature measurement and non-destructive testing. Sensors, 14(7), 12305-12348.
[22] Dávila-Sacoto, M. A., Hernández-Callejo, L., Alonso-Gómez, V., Gallardo-Saavedra, S., & González-Morales, L. (2021). Low-cost infrared thermography in aid of photovoltaic panels degradation research. Revista Facultad de Ingeniería Universidad de Antioquia, (101), 20-30.
[23] Ardebili, A., M. Farahani, and S. Asghari. (2020). Thermography with radiation excitation for non-destructive evaluation of composite and sheet metal. NDT Technology, 2 (5), 3-13.
[24] Kolagar, A. M., Cheraghzadeh, M., Akbari, D., & Farahani, M. (2021). Nondestructive Evaluation of Gas Turbine Blade Cooling Holes Blockage by Thermography. NDT Technology, 2(6), 46-52.
[25] Meshkizadeh, P., Rezaee Hajideh, M., Farahani, M., & Heidari-Rarani, M. (2021). Thermal signal reconstruction and employment of K clustering method for inspection of additive manufactured polymer parts. NDT Technology, 2(7), 60-69.
[26] Muttillo, M., Nardi, I., Stornelli, V., de Rubeis, T., Pasqualoni, G., & Ambrosini, D. (2020). On field infrared thermography sensing for PV system efficiency assessment: Results and comparison with electrical models. Sensors, 20(4), 1055.
[27] Osornio-Rios, R.A., J.A. Antonino-Daviu, and R. de Jesus Romero-Troncoso. (2018). Recent industrial applications of infrared thermography: A review. IEEE transactions on industrial informatics, 15 (2), 615-625
[28] Lucchi, E. (2018). Applications of the infrared thermography in the energy audit of buildings: A review. Renewable and Sustainable Energy Reviews, 82, 3077-3090.
[29] Jasti, N., Bista, S., Bhargav, H., Sinha, S., Gupta, S., Chaturvedi, S. K., & Gangadhar, B. N. (2019). Medical Applications of Infrared Thermography: A Narrative Review. Journal of Stem Cells, 14(1).
[30] Moropoulou, A., Avdelidis, N. P., Karoglou, M., Delegou, E. T., Alexakis, E., & Keramidas, V. (2018). Multispectral applications of infrared thermography in the diagnosis and protection of built cultural heritage. Applied Sciences, 8(2), 284.
[31] Herraiz, Á.H., A.P. Marugán, and F.P.G. Márquez. (2020). A review on condition monitoring system for solar plants based on thermography. Non-destructive testing and condition monitoring techniques for renewable energy industrial assets, 103-118.
[32] Crupi, V., G. Chiofalo, and E. Guglielmino. (2010). Using infrared thermography in low-cycle fatigue studies of welded joints. Welding Journal, 89 (9), 195-200.
[33] Nardi, I., Lucchi, E., de Rubeis, T., & Ambrosini, D. (2018). Quantification of heat energy losses through the building envelope: A state-of-the-art analysis with critical and comprehensive review on infrared thermography. Building and Environment, 146, 190-205.
[34] Wang, Q., Zhou, Y., Ghassemi, P., McBride, D., Casamento, J. P., & Pfefer, T. J. (2021). Infrared thermography for measuring elevated body temperature: Clinical accuracy, calibration, and evaluation. Sensors, 22(1), 215.
[35] De Capua, C., R. Morello, and I. Jablonski. (2018). Active and eddy current pulsed thermography to detect surface crack and defect in historical and archaeological discoveries. Measurement, 116, 676-684.
[36] Mohammadian, M., Akbari, D., Farahani, M., & Faraji Kalajahi, P. (2022). Nondestructive inspection of gas turbine blades by active thermography using different fluids. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 236(12), 1553-1563.
[37] Meola, C. (2012). Origin and theory of infrared thermography. Infrared Thermography Recent Advances and Future Trends, Bentham eBooks, 3-28.
[38] Maldague, X. (2001). Theory and practice of infrared technology for nondestructive testing.
[39] Modest, M.F. and S. Mazumder. (2021). Radiative heat transfer. Academic press.
[40] Ralston, J.C. and A.D. Strange. (2013). Developing selective mining capability for longwall shearers using thermal infrared-based seam tracking. International Journal of Mining Science and Technology, 23 (1), 47-53.
[41] Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., & Jayakumar, T. (2013). Infrared thermography for condition monitoring–A review. Infrared Physics & Technology, 60, 35-55.
[42] Suriani, M. J., Ali, A., Khalina, A., Sapuan, S. M., & Abdullah, S. (2012). Detection of defects in kenaf/epoxy using infrared thermal imaging technique. Procedia Chemistry, 4, 172-178.
[43] Möllmann, K. P., Karstädt, D., Pinno, F., & Vollmer, M. (2005). Selected critical applications for thermography: Convections in fluids, selective emitters and highly reflecting materials. In In: InfraMation 2005: proceedings/sponsored and published by the Inframation Training Center.... Vol. 6, 161-174 (pp. 161-174).
[44] Rout, A., B. Deepak, and B. Biswal (2019). Advances in weld seam tracking techniques for robotic welding: A review. robotics and computer-integrated manufacturing, 56, 12-37.
[45] Gao, X., D. You, and S. Katayama. (2012). Infrared image recognition for seam tracking monitoring during fiber laser welding. Mechatronics, 22 (4), 370-380.
[46] Wikle Iii, H. C., Kottilingam, S., Zee, R. H., & Chin, B. A. (2001). Infrared sensing techniques for penetration depth control of the submerged arc welding process. Journal of materials processing technology, 113(1-3), 228-233.
[47] Ghanty, P., Vasudevan, M., Mukherjee, D. P., Pal, N. R., Chandrasekhar, N., Maduraimuthu, V., ... & Raj, B. (2008). Artificial neural network approach for estimating weld bead width and depth of penetration from infrared thermal image of weld pool. Science and Technology of Welding and Joining, 13(4), 395-401.
[48] Buongiorno, D., Prunella, M., Grossi, S., Hussain, S. M., Rennola, A., Longo, N., ... & Brunetti, A. (2022). Inline defective laser weld identification by processing thermal image sequences with machine and deep learning techniques. Applied Sciences, 12(13), 6455.
[49] Yu, R., Han, J., Bai, L., & Zhao, Z. (2021). Identification of butt welded joint penetration based on infrared thermal imaging. Journal of Materials Research and Technology, 12, 1486-1495.
[50] Qu, Z., P. Jiang, and W. Zhang (2020). Development and application of infrared thermography non-destructive testing techniques. Sensors, 20 (14), 3851.
[51] Ciampa, F., Mahmoodi, P., Pinto, F., & Meo, M. (2018). Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors, 18(2), 609.
[52] Ahmadi, A., M. Farahani, and A. Ardebili. (2020). Applying pulse thermography technique for corrosion defect evaluation on the steel plates. Iranian Journal of Manufacturing Engineering, 7 (5), 24-32.
[53] Ardebili, A. and M. Farahani. (2020). Identification of Delamination Defects in Metal-Composite Shells Using Pulse Thermography. Modares Mechanical Engineering, 20 (9), 2303-2312.
[54] Ardebili, A. and M. Farahani. (2022).  Delamination Defect Evaluation in CFRP Composite Patches by the Use of Active Thermography. Journal of Nondestructive Evaluation, 41 (3), 61.
[55] Shaloo, M., Schnall, M., Klein, T., Huber, N., & Reitinger, B. (2022). A Review of Non-Destructive Testing (NDT) Techniques for Defect Detection: Application to Fusion Welding and Future Wire Arc Additive Manufacturing Processes. Materials, 15(10), 3697.
[56] Nategh, K. F., & Farahani, M. (2022). M. Improving the nondestructive thermography inspection results for detection of circular defects in coated metals using principal component analysis. NDT Technology, 2(9), 33-40.
[57] Nategh, K. F., & Farahani, M. (2022). M. Evaluating the circular defect detection capability in thermography testing by the use of analytical method. NDT Technology, 3(3), 1-9.
[58] Chung, Y., Shrestha, R., Lee, S., & Kim, W. (2020). Thermographic inspection of internal defects in steel structures: analysis of signal processing techniques in pulsed thermography. Sensors, 20(21), 6015.
[59] Dell’Avvocato, G., Palumbo, D., Pepe, R., & Galietti, U. (2021, February). Non-destructive evaluation of resistance projection welded joints (RPW) by flash thermography. In IOP Conference Series: Materials Science and Engineering (Vol. 1038, No. 1, p. 012003). IOP Publishing.
[60] Cheng, Y., Bai, L., Yang, F., Chen, Y., Jiang, S., & Yin, C. (2016). Stainless steel weld defect detection using pulsed inductive thermography. IEEE Transactions on Applied Superconductivity, 26(7), 1-4.
[61] McGovern, M.E., T.J. Rinker, and R.C. Sekol. (2019). Assessment of Ultrasonic Welds Using Pulsed Infrared Thermography. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 2 (1).
[62] Khoshkbary, R., Farahani, M., Safarabadi, M., & Asghari, S. (2019). Using of Modulated Thermography for Nondestructive Testing of Polymer Plates. NDT Technology, 2(4), 38-45.
[63] Ardebili, A., Farahani, M., & Asghari, S. (2020). Thermography with radiation excitation for non-destructive evaluation of composite and sheet metal. NDT Technology, 2(5), 3-13
[64] Lee, S., Nam, J., Hwang, W., Kim, J., & Lee, B. (2011). A study on integrity assessment of the resistance spot weld by Infrared Thermography. Procedia Engineering, 10, 1748-1753.
[65] Roemer, J., Pieczonka, L., Szwedo, M., Uhl, T., & Staszewski, W. J. (2013). Thermography of metallic and composite structures-review of applications. Int. Work. Smart Mater. Struct. SHM, 18(11).
[66] Stepinski, T., T. Uhl, and W. Staszewski (2013). Advanced structural damage detection: from theory to engineering applications, John Wiley and Sons.
[67] Guo, X. (2020). Ultrasonic infrared thermography of aluminium thin plates for crack inspection in friction stir welded joints. IEEE Sensors Journal, 20 (12), 6524-6531.
[68] Taram, A., Roquelet, C., Meilland, P., Dupuy, T., Kaczynski, C., Bodnar, J. L., & Duvaut, T. (2018). Nondestructive testing of resistance spot welds using eddy current thermography. Applied optics, 57(18), D63-D68.
[69] Kim, C., S. Hwang, and H. Sohn. (2022). Weld crack detection and quantification using laser thermography, mask R-CNN, and CycleGAN. Automation in Construction, 143, 104568.