بازرسی غیرمخرب عیوب صفحه‌ای به روش برش‌نگاری با تحریک فراصوتی مدوله شده

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

چکیده

تشخیص زودهنگام عیوب زیرسطحی در نگهداری و توسعه سازه‌های ساخته شده از مواد مرکب بسیار حائز اهمیت است. لذا بهره‌گیری از آزمون‌های غیرمخرب برای افزایش قابلیت اطمینان سیستم و جلوگیری از ﺷﮑﺴﺖ ﻧﺎﺑﻪﻫﻨﮕﺎم اﺟﺰا در ﺣﯿﻦ ﮐﺎرﮐﺮد، ضرورت پیدا می‌کند. با این حال تشخیص عیب در مواد مرکب، به دلیل چندجزئی بودن و پیچیدگی پیکربندی و نیز گستردگی عیوب مختلف در این مواد، همیشه چالش‌برانگیز است. برش‌نگاری با تحریک داخلی عیب یکی از روش‌های نوین بازرسی غیرمخرب عیوب زیرسطحی است که با دریافت پاسخ سطحی عیب نسبت به بارگذاری صورت گرفته به تشخیص عیوب می‌پردازد. در این پژوهش، برش‌نگاری با بارگذاری فراصوتی مدوله شده در بازرسی غیرمخرب نمونه‌‌ای از جنس ماده مرکب زمینه پلیمری تقویت شده با الیاف شیشه به کار رفته و پارامترهای موثر بر تشخیص‌پذیری عیب صفحه‌ای مورد بررسی قرار گرفت و نتایج به دست آمده با روش معمول با بارگذاری فراصوتی دامنه ثابت مقایسه شد. در انجام آزمون برش‌نگاری با تکنیک مدوله کردن دامنه، برخلاف بارگذاری فراصوتی دامنه ثابت، عیب در هر سه فرکانس‌ تحریک و از طریق تصاویر فاز و دامنه به آسانی تشخیص داده شد. همچنین عیب در فرکانس تحریک 43 کیلوهرتز با بیش‌ترین وضوح تشخیص داده شد. نتایج حاصل از بررسی اثر فرکانس مدولاسیون بر تشخیص‌پذیری عیب در تصویر دامنه نشان داد مستقل از فرکانس تحریک پیزوالکتریک، عیب در پایین‌ترین فرکانس‌ مدولاسیون بیشترین قابلیت تشخیص را دارد. همچنین فرکانس تحریک پیزوالکتریک، اثر معناداری بر تغییرات اختلاف فاز و قابلیت تشخیص عیب در تصاویر فاز ندارد که می‌توان آن را نشان دهنده استقلال تصویر فاز از شرایط بارگذاری دانست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Non-destructive Testing of Planar Defects Using Shearography Method with Modulated Ultrasonic Excitation

نویسندگان [English]

  • sina Sabbaghi Farshi
  • Davood Akbari
Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Early detection of sub surface defects is very important in the maintenance and development of structures made of composite materials. Therefore , it becomes necessary to use non - destructive tests to improve system reliability and prevent untimely failure of components during operation. However , due to the multi-component nature of the configuration , its complexity , and the extent of various defects in these materials , the detection of defects in composite materials is always difficult .So , there is important to develop some new and advanced methods to detect many of defects in these types of materials . Shearography or laser shearing interferometery , with internal excitation of the defect is one of the novel methods of non - destructive testing of subsurface defects , which detects defects by receiving the defect's surface response to the loading. In this article, a glass fiber-reinforced polymer specimen was subjected to non-destructive inspection using shearography with modulated ultrasonic loading. The parameters influencing the detectability of plane defects were studied , and the obtained results were compared with the usual constant - amplitude ultrasonic loading method . In shearography tests using the amplitude modulation technique , in contrast to the constant amplitude ultrasonic loading , the defect was easily detected at all three excitation frequencies and through the phase and amplitude images . Additionally , the highest resolution of defect detection was achieved at the 43 k Hz excitation frequency . The amplitude image results showed that the defect has higher detect - ability at lower modulation frequencies, regardless of the piezoelectric stimulation frequency . Furthermore , the phase difference changes and defect detect - ability in the phase images are not significantly affected by the piezoelectric excitation frequency , demonstrating the independence of the phase image and the modulating method from the loading conditions .

کلیدواژه‌ها [English]

  • Digital Shearography
  • Composites
  • Non-destructive Test
  • Piezoelectric
  • Modulation Frequency
[1] W. Staszewski, S. Mahzan, R. Traynor, Health monitoring of aerospace composite structures–Active and passive approach, composites Science and Technology, Vol. 69, No. 11-12, pp. 1678-1685, 2009.
[2] K. Diamanti, C. Soutis, Structural health monitoring techniques for aircraft composite structures, Progress in Aerospace Sciences, Vol. 46, No. 8, pp. 342-352, 2010.
[3] V. Giurgiutiu, Structural health monitoring of aerospace composites, Vol., No. pp., 2015.
[4] R. Montanini, F. Freni, Non-destructive evaluation of thick glass fiber-reinforced composites by means of optically excited lock-in thermography, Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 11, pp. 2075-2082, 2012.
[5] W. Nsengiyumva, S. Zhong, J. Lin, Q. Zhang, J. Zhong, Y. Huang, Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review, Composite Structures, Vol. 256, No. pp. 112951, 2021.
[6] K. Senthil, A. Arockiarajan, R. Palaninathan, B. Santhosh, K. Usha, Defects in composite structures: Its effects and prediction methods–A comprehensive review, Composite Structures, Vol. 106, No. pp. 139-149, 2013.
[7] Y. Hung, Shearography: a novel and practical approach for nondestructive inspection, Journal of Nondestructive Evaluation, Vol. 8, No. 2, pp. 55-67, 1989.
[8] J. Leendertz, J. Butters, An image-shearing speckle-pattern interferometer for measuring bending moments, Journal of Physics E: Scientific Instruments, Vol. 6, No. 11, pp. 1107, 1973.
[9] Y. Hung, H. Ho, Shearography: An optical measurement technique and applications, Materials science and engineering: R: Reports, Vol. 49, No. 3, pp. 61-87, 2005.
[10] S. Sabbaghi Farshi, D. Akbari, Application of laser shearing interferometry in non-destructive inspection and size estimation of plane defects, Journal of Solid and Fluid Mechanics, Vol. 9, No. 4, pp. 1-14, 2019.
[11] Y. Hung, Applications of digital shearography for testing of composite structures, Composites Part B: Engineering, Vol. 30, No. 7, pp. 765-773, 1999.
[12] R. Mignogna, R. Green Jr, J. Duke Jr, E.G. Henneke II, K. Reifsnider, Thermographic investigation of high-power ultrasonic heating in materials, Ultrasonics, Vol. 19, No. 4, pp. 159-163, 1981.
[13] Y. Hung, W. Luo, L. Lin, H. Shang, NDT of joined surfaces using digital time-integrated shearography
with multiple-frequency sweep, Optics and lasers in engineering, Vol. 33, No. 5, pp. 369-382, 2000.
[14] D. Findeis, J. Gryzagoridis, Digital shearography and vibration excitation for NDT of aircraft components, in: AIP Conference Proceedings, American Institute of Physics, 2014, pp. 33-38.
[15] H. Liu, S. Guo, Y.F. Chen, C.Y. Tan, L. Zhang, Acoustic shearography for crack detection in metallic plates, Smart Materials and Structures, Vol. 27, No. 8, pp. 085018, 2018.
[16] H. Liu, M. Liu, L. Zhang, Y.F. Chen, C.Y. Tan, S. Guo, F. Cui, Directed acoustic shearography for crack detection around fastener holes in aluminum plates, NDT & E International, Vol. 100, No. pp. 124-131, 2018.
[17] H. Asemani, N. Soltani, Comparison of Stroboscopic Shearography and Time-Average Shearography Methods for Nondestructive Testing, Modares Mechanical Engineering, Vol. 20, No. 4, pp. 1089-1098, 2020.
[18] H. Gerhard, G. Busse, Lockin-ESPI interferometric imaging for remote non-destructive testing, NDT & E International, Vol. 39, No. 8, pp. 627-635, 2006.
[19] A.E. Dolinko, G.H. Kaufmann, Enhancement in flaw detectability by means of lockin temporal speckle pattern interferometry and thermal waves, Optics and lasers in engineering, Vol. 45, No. 6, pp. 690-694, 2007.
[20] H. Gerhard, G. Busse, Thermal Waves for Imaging of Defects with Lockin‐Speckle Interferometry, Strain, Vol. 43, No. 3, pp. 229-234, 2007.
[21] G. Kim, S. Hong, G.H. Kim, K.-Y. Jhang, Evaluation of subsurface defects in fiber glass composite plate using lock-in technique, International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 4, pp. 465-470, 2012.
[22] T. Zweschper, A. Dillenz, G. Riegert, D. Scherling, G. Busse, Ultrasound excited thermography using frequency modulated elastic waves, Insight-Non-Destructive Testing and Condition Monitoring, Vol. 45, No. 3, pp. 178-182, 2003.
[23] J.-C. Krapez, F. Taillade, D. Balageas, Ultrasound-lockin-thermography NDE of composite plates with low power actuators. Experimental investigation of the influence of the Lamb wave frequency, Quantitative InfraRed Thermography Journal, Vol. 2, No. 2, pp. 191-206, 2005.
[24] A. Dillenz, G. Busse, D. Wu, Ultrasound lock-in thermography: feasibilities and limitations, in: Diagnostic Imaging Technologies and Industrial Applications, SPIE, 1999, pp. 10-15.
[25] S. Sabbaghi Farshi, D. Akbari, Application of lock-in shearography in non-destructive testing of planar defects, Iranian Journal of Manufacturing Engineering, Vol. 9, No. 1, pp. 1-9, 2022.
[26] D. Francis, R. Tatam, R. Groves, Shearography technology and applications: a review, Measurement science and technology, Vol. 21, No. 10, pp. 102001, 2010.
[27] J. Liu, W. Yang, J. Dai, Research on thermal wave processing of lock-in thermography based on analyzing image sequences for NDT, Infrared Physics & Technology, Vol. 53, No. 5, pp. 348-357, 2010.
[28] A. Dillenz, T. Zweschper, G. Busse, Burst phase-angle thermography with elastic waves, in: Thermosense XXIV, SPIE, 2002, pp. 572-577.
[29] D. Akbari, N. Soltani, M. Farahani, Numerical and experimental investigation of defect detection in polymer materials by means of digital shearography with thermal loading, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 227, No. 3, pp. 430-442, 2013.
[30] D. Wu, G. Busse, Lock-in thermography for nondestructive evaluation of materials, Revue générale de thermique, Vol. 37, No. 8, pp. 693-703, 1998.