مروری بر روشهای بازرسی خطوط لوله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا،دانشکده مکانیک،دانشگاه علم و صنعت، تهران، ایران

2 دانشکده مهندسی مکانیک/دانشگاه علم و صنعت ایران

چکیده

خطوط لوله به‌طور گسترده‌ای برای انتقال حجم زیادی از آب و فاضلاب در مسافتهای طولانی به‌کار می‌روند. این زیرساختهای ارزشمند زمانی توجه همگانی را به خود جلب می‌کنند، که آسیب دیده‌اند. به‌منظور اجتناب از وقوع حوادث ناگوار، تشخیص اولیه عیوب موجود در خطوط لوله آب و فاضلاب و تعیین کمیتی این عیوب، بسیار حائز اهمیت است. در تعداد زیادی از کشورها، بازرسی خطوط لوله آب و فاضلاب معمولا با استفاده از روش بازرسی دوربینی انجام می‌شود که یک اپراتور با ارزیابی تصاویر خام دوربین به شناسایی مکان آسیب‌دیدگیها می‌پردازد. روشهای بازرسی دوربینی دارای تعدادی معایب هستند که کاربرد آنها را محدود می‌سازد. یکی از معایب روش بازرسی دوربینی، نبود نور کافی و روشنایی در داخل لوله‌ها است. عیب دیگر روش بازرسی دوربینی این است که کیفیت تصاویر به‌دست آمده به‌دلیل شرایط روشنایی نامطلوب، پایین است. در نتیجه روشهای بازرسی دوربینی می‌توانند صرفا عیوب بزرگ را به‌طور مطمئنی تشخیص دهند. در دهه‌های اخیر، روشهای حرارت‌نگاری، میکروویو، لیزر و سونار پیشنهاد شده‌اند تا در ترکیب با روش بازرسی دوربینی، نتایج بازرسی را بهبود دهند. همچنین، تجهیزات جدیدی که چندین سنسور را به‌کار می‌برند و قادر به انجام بازرسی در مسافتهای دور هستند، پیشنهاد گردیده‌اند. مقاله حاضر به مرور روشهای بازرسی متداول و جدید در خطوط لوله آب و فاضلاب می‌پردازد. بعلاوه، انواع متفاوت رباتها برای بازرسی داخل لوله‌ها بحث می‌گردند.

کلیدواژه‌ها


عنوان مقاله [English]

A Review on Inspection Methods of Pipelines

نویسندگان [English]

  • Turaj Azizzadeh 1
  • Mohammad Riahi 2
1 Department of mechanical engineering, University of science and technology, Tehran, Iran
2 Department of mechanical engineering/Iran university of science and technology
چکیده [English]

Pipelines are widely used in transporting large quantities of water and sewage over long distances. These valuable infrastructures attract public attention only when they fail. The quantitative and early detection of defects in sewer pipelines is very important in order to avoid severe consequences. In many countries, sewer pipeline inspection is usually carried out using CCTV (Closed-Circuit TV) cameras and off-line human surveys through raw image assessment for failure identification. CCTV-based techniques have some limitations that restrict their implementation. One of the disadvantages of CCTV-based techniques is the lack of visibility in the interior of the pipes. The other disadvantage of CCTV-based techniques is the poor quality of the obtained images because of difficult lighting conditions. In consequence, CCTV-based techniques can only detect gross defects reliably. In recent decades, thermography, microwave, laser, and sonar-based techniques have been proposed to complement the conventional CCTV-based technique and to improve inspection results. Also, new inspection devices employing multiple sensors and being capable of carrying out remote sewer inspection tasks have been proposed. This paper presents an overview of the conventional and novel inspection technologies for sewer pipelines. Furthermore, different types of robots for in pipe inspection tasks are discussed.

کلیدواژه‌ها [English]

  • Sewer pipelines
  • CCTV-based inspection technique
  • Multi-sensor inspection technique
  • Pipe inspection robots
1- Lynch, J. P., Loh, K. J. (2006). A summary review of wireless sensors and sensor networks for structural health monitoring. Shock and Vibration Digest. 38(2), 91-130.
2- Doebling, S. W., Farrar, C. R., Prime, M. B. (1998). A summary review of vibration-based damage identification methods. Shock and vibration digest. 30(2), 91-105.
3- Worden, K., Farrar, C. R., Manson, G., Park, G. (2007). The fundamental axioms of structural health monitoring. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 463, No. 2082, pp. 1639-1664). The Royal Society.
4- Iyengar, S. S., Boroojeni, K. G., Balakrishnan, N. (2014). Mathematical Theories of Distributed Sensor Networks. Springer.
5- Pace, N. G. (1994). Ultrasonic surveying of fully charged sewage pipes. Electronics & communication engineering journal, 6(2), 87-92.
6- US Environmental Protection Agency, Addressing the challenge through innovation, 2007. URL http://www.epa.gov/nrmrl/pubs/600f07015/600f07015.pdf.
7- Sewer collapse closes chateau street on north side, 2009. URL http://www.post-gazette.com/pg/09134/970143-100.stm.
8- URL http: / / latimesblogs.latimes.com/ lanow/2009/09/coldwatercanyon- could-be-closed- for-3-days-due-to-destructivewater-main-break.html.
9- Misiūnas, D. (2008). Failure monitoring and asset condition asssessment in water supply systems. Vilniaus Gedimino technikos universitetas.
10- Gokhale, S. R., Abraham, D. M., Iseley, T. (1997). Intelligent sewer condition–Evaluation technologies. An analysis of three promising options. In North American No-Dig 1997 Conf. (pp. 253-265).
11- Rome, E., Hertzberg, J., Kirchner, F., Licht, U., Christaller, T. (1999). Towards autonomous sewer robots: the MAKRO project. Urban Water, 1(1), 57-70.
12- Schilling, K., Roth, H. (1999). Navigation and Control for Pipe Inspection and Repair Robots. IFAC Proceedings Volumes, 32(2), 8446-8449.
13- Wirahadikusumah, R., Abraham, D. M., Iseley, T., Prasanth, R. K. (1998). Assessment technologies for sewer system rehabilitation. Automation in Construction, 7(4), 259-270.
14- Read, G. F., Vickridge, I. (1997). Sewers: Rehabilitation and New Construction: Repair and Renovation, Butterworth-Heinemann, London, UK.
15- Sewer Scanner and Evaluation Technology. URL www.new-technologies.org.
16- Kleiner, Y., Adams, B. J., Rogers, J. S. (2001). Water distribution network renewal planning. Journal of Computing in Civil Engineering, 15(1), 15-26.
17- Pace, N. G. (1994). Ultrasonic surveying of fully charged sewage pipes. Electronics & communication engineering journal, 6(2), 87-92.
18- Adams, D. (2007). Health monitoring of structural materials and components: methods with applications. John Wiley & Sons.
19- Bray D.E. (1997). Nondestructive Evaluation. A Tool in Design,Manufacturing, and Service. CRC Press, Boca Raton, Fla, USA.
20- Trenchless Technology Network, Underground Mapping,Pipeline Location Technology and Condition Assessment, Infrastructure Engineering and Management Research Centre, The University of Birmingham, (2002).
21- Ong, J. K., Kerr, D., Bouazza-Marouf, K. (2003). Design of a semi-autonomous modular robotic vehicle for gas pipeline inspection. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 217(2), 109-122.
22- Kuntze, H. B., Haffner, H. (1998, May). Experiences with the development of a robot for smart multisensoric pipe inspection. In Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on (Vol. 2, pp. 1773-1778). IEEE.
23- Tâche, F., Fischer, W., Moser, R., Mondada, F., Siegwart, R. (2007). Adapted magnetic wheel unit for compact robots inspecting complex shaped pipe structures. In advanced intelligent mechatronics, 2007 IEEE/ASME international conference on (No. LSRO-CONF-2007-013, pp. 1-6). IEEE Press.
24- Fujiwara, S., Kanehara, R., Okada, T., Sanemori, T. (1993). An articulated multi-vehicle robot for inspection and testing of pipeline interiors. In Intelligent Robots and Systems' 93, IROS'93. Proceedings of the 1993 IEEE/RSJ International Conference on (Vol. 1, pp. 509-516). IEEE.
25- Li, P., Ma, S., Li, B., Wang, Y. (2008). Design of a mobile mechanism possessing driving ability and detecting function for in-pipe inspection. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on (pp. 3992-3997). IEEE.
26- Roh, S. G., Lee, J. S., Moon, H., & Choi, H. R. (2009). In-pipe robot based on selective drive mechanism. International Journal of Control, Automation and Systems, 7(1), 105-112.
27- Schempf, H., Mutschler, E., Gavaert, A., Skoptsov, G., Crowley, W. (2010). Visual and nondestructive evaluation inspection of live gas mains using the Explorer™ family of pipe robots. Journal of Field Robotics, 27(3), 217-249.
28- Wang, Z., Gu, H. (2008). A bristle-based pipeline robot for ill-constraint pipes. IEEE/ASME Transactions on Mechatronics, 13(3), 383-392.
29- Aracil, R., Saltarén, R., Reinoso, O. (2003). Parallel robots for autonomous climbing along tubular structures. Robotics and Autonomous Systems, 42(2), 125-134.
30- Bekhit, A., Dehghani, A., Richardson, R. (2012). Kinematic analysis and locomotion strategy of a pipe inspection robot concept for operation in active pipelines. International Journal of Mechanical Engineering and Mechatronics, 1929, 2724.
31- Neubauer, W. (1994). A spider-like robot that climbs vertically in ducts or pipes. In Intelligent Robots and Systems' 94.'Advanced Robotic Systems and the Real World', IROS'94. Proceedings of the IEEE/RSJ/GI International Conference on (Vol. 2, pp. 1178-1185). IEEE.
32- Zagler, A., Pfeiffer, F. (2003). "MORITZ" a pipe crawler for tube junctions. In Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International Conference on (Vol. 3, pp. 2954-2959). IEEE.
33- Wright, C., Johnson, A., Peck, A., McCord, Z., Naaktgeboren, A., Gianfortoni, P., Choset, H. (2007). Design of a modular snake robot. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on (pp. 2609-2614). IEEE.
34- Water Environment Research Foundation, 2009. URL http: //www.werf.org /AM/ CustomSource/ Downloads/ uGet-ExecutiveSummary.cfm?FILE=ES-01-CTS- 7.pdf&Content-FileID=1960.
35- Sarshar, N., Halfawy, M. R., Hengmeechai, J. (2009). Video processing techniques for assisted CCTV inspection and condition rating of sewers. Journal of Water Management Modeling, 129-147.
36- Morici, P. (1997). Small cameras: diagnosing sewer laterals quickly and easily. Trenchless Technol., 6(10), 40-45.
37- Roberts, R. (1999). Laser profilometry as an inspection method for reformer catalyst tubes. Journal of Nondestructive Testing & Ultrasonic (Germany), 4(2).
38- Applications of laser profilometry for boiler tube inspection, vol.3, no. 7, July 1998.
39- Zhuang, B. H., Zhang, W., Cui, D. Y. (1998). Noncontact laser sensor for pipe inner wall inspection. Optical Engineering, 37(5), 1643-1648.
40- Thames Water/OMC Pipe Profiling Tool. URL http://www.optical-metrology-centre.com/gallery_sewer_profiling.htm.
41- Hartrumpf, M., Munser, R. (1997). Optical three-dimensional measurements by radially symmetric structured light projection. Applied Optics, 36(13), 2923-2928.
42- Doyle, J. (1999), The expanding use of lasers in nondestructive testing, Materials evaluation, 57(4), 426-430.
43- Kuntze, H. B., Schmidt, D., Haffner, H., Loh, M. (1995). KARO-A flexible robot for smart sensor-based sewer inspection. In Proc. Int. Conf. No Dig'95, Dresden, Germany, 19 (pp. 367-374).
44- CSIRO annual report, 1994–95.
45- Teichgräber, B., Stemplewski, J., Althoff, H., Elkmann, N. (2006). Remote controlled inspection device for large sewers. Water Practice and Technology, 1(4), wpt2006080.
46- Eiswirth, M., Frey, C., Herbst, J., Jacubasch, A., Held, I., Heske, C., Wolf, L. (2001). Sewer assessment by multi-sensor systems. In: Proceedings of the 2nd World Water Congress of the International Water Association.