کاربرد روش غیرمخرب نشت شار مغناطیسی در مشخصه‌یابی خواص مکانیکی فولاد API X65

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز بررسی‌های غیرمخرب، دانشگاه صنعتی سجاد، مشهد، ایران

2 دانشکده مهندسی مکانیک و مواد، دانشگاه صنعتی سجاد، مشهد، ایران

3 دانشکده برق و مهندسی پزشکی، دانشگاه صنعتی سجاد، مشهد، ایران

چکیده

در این مقاله، از روش غیرمخرب آزمون نشت شار مغناطیسی برای مشخصه‌یابی ریزساختار و خواص مکانیکی فولاد API X65 استفاده شده است. آزمون نشت شار مغناطیسی یک روش غیرمخرب پرکاربرد در بازرسی خطوط لوله‌های نفت و گاز می‌باشد که بر پایه شناسایی شارمغناطیسی نشت یافته از سطح قطعه عمل می‌کند. از این آزمون به طور گسترده در شناسایی ناپیوستگی‌هایی شامل انواع ترک‌های سطحی، زیرسطحی و همچنین تغییرات ضخامت ناشی از خوردگی نهان در جداره داخلی خطوط لوله استفاده می‌شود. در بررسی حاضر، از چهار ریزساختار متفاوت این فولاد که تحت چهار نوع عملیات حرارتی مختلف قرار گرفته، استفاده شده است. نتایج حاصل نشان می‌دهند که تغییر در مشخصه‌های ریزساختاری این فولاد شامل مورفولوژی فاز فریت (چندوجهی یا سوزنی) و همچنین اندازه دانه‌های فریتی، بر چگالی خطوط شارمغناطیسی نشر یافته در داخل قطعه و میزان شار مغناطیسی نشت یافته از سطح قطعه اثر گذار می‌باشد. بنابراین آزمون‌ غیرمخرب نشت شارمغناطیسی پیشنهادی می‌تواند به عنوان روشی کارا در تعیین نوع ریزساختار و همچنین خواص مکانیکی قطعه مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of nondestructive magnetic flux leakage method in characterization of mechanical properties of API X65 steel

نویسندگان [English]

  • Hossein Norouzi Sahraei 1
  • Farzad Akhlaghi Modiri 1
  • Saeed Kahrobaee 2
  • Iman Ahadi Akhlaghi 3
1 Center of Nondestructive Evaluation, Sadjad University of Technology, Mashhad, Iran.
2 Department of Mechanical and Materials Engineering, Sadjad University of Technology, Mashhad, Iran.
3 Department of Electrical and Bioelectric Engineering, Sadjad University of Technology, Mashhad, Iran.
چکیده [English]

In this paper, the capability of non-destructive method of magnetic flux leakage in characterizing the microstructure and mechanical properties of API X65 steel has been evaluated. Magnetic flux leakage method is a popular non-destructive inspection method for oil and gas pipelines based on the detection of magnetic flux leakage from the surface of the part. This test is widely used to identify all discontinuities including surface and subsurface cracks as well as thickness changes due to latent corrosion in the inner wall of pipelines. In this study, four different microstructures subjected to four different types of heat treatment have been used. The results show that changes in microstructural characteristics, including morphology of the ferrite phase (polyhedral or needle) as well as the size of the ferrite grains, affect the density of magnetic flux lines emitted inside the part and the amount of magnetic flux leaked from the surface. Therefore, one can use the magnetic flux leakage test to efficiently determine the type of microstructure as well as the mechanical properties of the part.

کلیدواژه‌ها [English]

  • Magnetic flux leakage test
  • Non-destructive testing
  • API X65 Steel
  • Mechanical properties
  • Microstructural changes
 
[1]     Shi, Y., Zhang, C., Li, R., Cai, M., & Jia, G., (2015). Theory and application of magnetic flux leakage pipeline detection. Sensors, 15(12), 31036-31055.‏
[2]     Wang, Z. D., Gu, Y., & Wang, Y. S., (2012). A review of three magnetic NDT technologies. Journal of Magnetism and Magnetic Materials, vol. 324, 382-388.
[3]     Usarek, Z., & Warnke, K., (2017). Inspection of gas pipelines using magnetic flux leakage technology. Advances in Materials Science, 17.3, 37-45.
[4]     Gao, Y., Tian, G. Y., Li, K., Ji, J., Wang, P., & Wang, H., (2015). =Multiple cracks detection and visualization using magnetic flux leakage and eddy current pulsed thermography=. Sensors and Actuators A: Physical, 234,  269-281.
[5]     Li, E., Kang, Y., Tang, J., & Wu, J., (2018). A new micro magnetic bridge probe in magnetic flux leakage for detecting micro-cracks. Journal of Nondestructive Evaluation, 37(3), 46.
[6]     Kim, J. W., & Park, S., (2018). Magnetic flux leakage sensing and artificial neural network pattern recognition-based automated damage detection and quantification for wire rope non-destructive evaluation. Sensors, 18(1), 109.‏
[7]     Li, Y., Wilson, J., & Tian, G. Y., (2007). Experiment and simulation study of 3D magnetic field sensing for magnetic flux leakage defect characterisation. NDt & E international, 40(2), 179-184.
[8]     Antipov, A. G., & Markov, A. A., (2014). Evaluation of transverse cracks detection depth in MFL rail NDT. Russian Journal of Nondestructive Testing, 50(8), 481-490.‏
[9]     Kim, J. W., Park, J., Yu, B. J., & Park, S., (2016). MFL Sensing based NDE Technique for Defect Detection of Railway Track. 8th European Workshop on Structural Health Monitoring (EWSHM 2016). Bilbao, Spain.‏
[10]  Terada, Y., Yamashita, M. I. T. S. U. G. U., Tamehiro, H., & Ayukawa, N., (1997). Development of API X100 UOE line pipe. Nippon steel technical report, 72, 47-52.
[11]  Sherif, E. S. M., Almajid, A. A., Khalil, K. A., Junaedi, H., & Latief, F. H., (2013). Electrochemical studies on the corrosion behavior of API X65 pipeline steel in chloride solutions. International journal of electrochemical science, 8, 9360-9370.
[12]  Hashemi, S. H., (2011). Strength–hardness statistical correlation in API X65 steel. Materials Science and Engineering A, 528, 1648-1655.
[13]  Hashemi, S. H., & Mohammadyani, D., (2012). Characterisation of weldment hardness, impact energy and microstructure in API X65 steel. International Journal of Pressure Vessels and Piping, 98, 8-15.
[14]  El-Danaf, E., Baig, M., Almajid, A., Alshalfan, W., Al-Mojil, M., & Al-Shahrani, S., (2013). Mechanical, microstructure and texture characterization of API X65 steel. Materials & Design, 47, 529-538.
[15]  Mirzaee, A., Kahrobaee, S., & Ahadi Akhlaghi, I., (2020). Non-destructive determination of microstructural/mechanical properties and thickness
variations in API X65 steel using magnetic hysteresis loop and artificial neural networks. Nondestructive Testing and Evaluation, 35(2), 190-206.‏
[16]  Sahebalam, A., Kashefi, M., & Kahrobaee, S., (2014). Comparative study of eddy current and Barkhausen noise methods in microstructural assessment of heat treated steel parts. Nondestructive Testing and Evaluation, 29(3), 208-218.‏
[17]  Ahmadzade-Beiraki, E., Kahrobaee, S., Kashefi, M., Akhlaghi, I. A., & Mazinani, M., (2020). Quantitative Evaluation of Deformation Induced Martensite in Austenitic Stainless Steel Using Magnetic NDE Techniques. Journal of Nondestructive Evaluation, 39(1), 1-9.‏