طراحی سیستم تشخیص و تحلیل ناخالصی‌های عایق الکتریکی ترانسفورماتور (ICAS) بر پایه پردازش تصاویر پرتونگاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 شرکت عایقهای الکتریکی پارس

2 شرکت عایق های الکتریکی پارس

10.30494/jndt.2021.251102.1048

چکیده

در فرآیند تولید عایق ترانسفورماتور، بروز ناخواسته­ی ناخالصی در عایق سبب افزایش شدت میدان الکتریکی فراتر از میزان تحمل عایق و منجر به وقوع پدیده­ی تخلیه الکتریکی و خسارت­های بزرگ خواهد شد. لذا به منظور آشکارسازی ناخالصی­های موجود در عایق، در واحد کنترل کیفیت تولید عایق ترانسفورماتور، از آزمون پرتونگاری استفاده می­شود. در آزمون پرتونگاری موجود، اپراتور پرتوکار با مشاهده تصویر خروجی نقاط روشن متمایز از زمینه تصاویر را به عنوان ناخالصی اعلام می­کند، اما عوامل مختلف از جمله نویز تصاویر پرتونگاری، منجر به کاهش دقت و سرعت می­گردد و از طرفی در این روش جنس ناخالصی­ها قابل تشخیص نمی­باشد. لذا در صورت شناسایی ناخالصی در عایق، شناسایی منشاء آلودگی غیرممکن و  پاکسازی خط تولید عایق دشوار و هزینه­بر خواهد بود. در این پژوهش، یک سیستم تحلیل ناخالصی­های عایق الکتریکی ترانسفورماتور تحت عنوان ICAS پیشنهاد می­شود که در آن با بکارگیری روش­های پردازش تصویر و ماشین بینایی، ضمن بهبود وضوح کیفی تصاویر پرتونگاری، می­توان به صورت اتوماتیک ناخالصی­های موجود در قطعات عایق­های الکتریکی ترانسفورماتور را شناسایی نمود و با تشخیص جنس ناخالصی­ها از نوع آهن و آلومینیوم اطلاعاتی راجع به علت وقوع ناخالصی­ها در خط تولید عایق کسب نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing a system for detection and analysis of transformer electrical insulation contamination (ICAS) based on radiographic images processing

نویسندگان [English]

  • atefeh shagholi 1
  • parviz Teymouri 2
1 pars electrical insulation Co
2 Pars electrical insulation Co
چکیده [English]

In the process of transformer insulation production, unwanted occurrence of contaminations in the insulation will cause the electrical discharge and major damage. Therefore, in order to detect impurities in the insulation, radiographic test is used in the quality control unit of transformer insulation production. In the available radiographic test, the radiographic operator observes the output image of the clear shiny spots in the field of images as impurities, but some factors such as the noise of radiographic images and the small size of the existing contaminations, reduce the accuracy and speed. On the other hand, the existing method does not detect the type of contaminations. Therefore, if contaminations are identified in the insulation, it will be impossible to identify the source of contamination and clean the insulation production line. In this research, a system for analyzing the contaminations of electrical insulation of transformers called ICAS is proposed in which by using image processing and machine vision methods, while improving the quality of radiographic images, contaminations can be automatically found in Identified the electrical insulation components of the transformer and obtained information about the occurrence of impurities in the insulation production line by identifying the impurities of iron and aluminum.

کلیدواژه‌ها [English]

  • image processing
  • radiography imaging
  • ICAS system
  • Quality Control
  • Transformer Insulation Contamination
  • colormap
 
[1]      Rose ,K. H. (2005). Project Quality Management: Why, What and How. J. Ross Publishing. pp 224.
[2]     Phillips, J. (2008). Quality Control in Project Management. The Project Management Hut.
[4]     Markalous. S., Tenbohlen, M. S., and Feser, K. (2008). Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals. in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 6, pp. 1576-1583.
[5]     Gulski, E. (1995). Digital analysis of partial discharges. in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2, no. 5,pp.822-837.
[6]     Novelline, R. (1997).  Squire's Fundamentals of Radiology. Harvard University Press. P. 42.
[7]     Stevenson, C. A. (2006) Soanes"X-ray"Oxford English Dictionary . Oxford University Press.
[8]     URL http://www .pei-co.com/index.aspx?siteid=2&fkeyid=&siteid=2&pageid=184
[9]     شاقلی، ع؛ تیموری، پ؛ (1397) .تشخیص و تحلیل ناخالصی­های عایق­های الکتریکی ترانسفورماتور با بکارگیری پردازش تصاویر پرتونگاری. فصلنامه تخصصی ایران ترانسفو، شماره 5، ص 9-13.
[10]  Hui-Fuang, N. (2006). Automatic thresholding for defect detection. Elsevier. Pattern recognition letters, No. 500, pp. 1644-1649.
[11]  Hansong. ,J., Yang, T., Xuemei, Ch. (2005). Real-time Image Analysis for Nondestructive Detection of Metal Sliver in Packed Food in Packed Food Xin Chen. Proc. SPIE 5996, Optical Sensors and Sensing Systems for Natural Resources and Food Safety and Quality.
[12]  Shrestha, R., Won Tae, K. (2014). Detection of Subsurface Defects in Metal Materials Using Infrared Thermography. Image Processing and Finite Element Modeling Journal of the Korean Society for Nondestructive Testing, Vol. 34, No. 2, pp. 128-134.
[13]  Changhang, X., Jing, X., Guoming, Ch., Weiping, H. (2014). An infrared thermal image processing framework based on superpixel algorithm to detect cracks on metal surface. Elsevier, Infrared Physics & Technology, No. 67, pp. 266–272.
[14]  Hanke, R., Fuchs, Th., Uhlmann, N. (2008). X-ray based methods for non-destructive testing and material characterization. Elsevier, Nuclear Instruments and Methods in Physics Research A, No. 591, pp. 14–18.
[15]  Verta.C, Florea, C., Florea, L., Sultana, A. (2013). Software Tools for Medical Diagnosis Support Automatic Interpretation of Digital X-ray Films. IEEE International Conference on E-Health and Bioengineering, pp. 21-23.
 
[16]  Oprea, S., Marinescu, C., Lita, I., Jurianu, M., Visan, D. A., Cioc, I. B. (2008). Image processing techniques used for dental x-ray image analysis. 31st International Spring Seminar on Electronics Technology, Budapest, pp. 125-129.
[17]  Setianingrum, A. H., Rini, A. S., Hakiem, N. (2017). Image segmentation using the Otsu method in Dental X-rays. Second International Conference on Informatics and Computing (ICIC), Jayapura, pp. 1-6.
[18]  Selvapriya, B., Raghu, B. (2018). A Color Map for Pseudo Color Processing of Medical Images. International Journal of Engineering & Technology, No. 7, pp.  954-958.
[19]  Gwilliam, J. C., Pezzementiy, Z. E., Jantho,. Okamuraz, A.M., Hsiaox, S. (2010). Human vs. Robotic Tactile Sensing: Detecting Lumps in Soft Tissue. IEEE Haptics Symposium, pp. 25 – 26.
[20]  Gonzales, Rafael, C., Richard, E., Woods.(2002) Digital Image Processing. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall.
[21]  Bowman, A. W., Azzalini. A. (1997) Applied Smoothing Techniques for Data Analysis. New York: Oxford University Press Inc.
[22]  Zheng, L. Li., Bai ,Y. X., Zhou, F. (2016) .Background prior and boundary weight-based pedestrian segmentation in infrared images. IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, pp. 839-843.
[23]  Aghaei, A.  (2018). A cellular Automata approach for noisy images edge detection under null boundary conditions. Second International Conference on Computing Methodologies and Communication (ICCMC), Erode, pp. 771-777.
[24]  Rajpurkar, A., Engler, M. (2018). Optimal Separation, Detection, and Analysis of FISH Images. stanford Proposals.
[25]  Yuan, L., Xu ,X., (2015). Adaptive Image Edge Detection Algorithm Based on Canny Operator. 4th International Conference on Advanced Information Technology and Sensor Application (AITS), Harbin, pp. 28-31.
[26]  Robertson, P. K., O’Callaghan, J. F. (1986). The generation of color sequences for univariate and bivariate mapping. IEEE Computer Graphics and Applications, pp. 24–32.
[27]  Tajima, J. (1983) .Uniform color scale applications to computer graphics. Computer Vision, Graphics, and Image Processing, pp. 305–325.
[28]  Zhou, L., Hansen, C. (2016). A survey of colormaps in visualization. IEEE Transactions on Visualization and Computer Graphics, pp. 2051–2069.
Terece, L., Bujack, T. R., Samsel, F., Shrivastava, P., Rogers, D.H. (2018). Measuring and Modeling the Feature Detection Threshold Functions of Colormaps Colin Ware. IEEE Trans Vis Comput Graph. pp. 2777-2790.