استحصال داده‌های پروجکشن‌ها در دمانگاری محاسباتی صنعتی باریکه بادبزنی با استفاده از مدل‌سازی مونت‌کارلویی در آزمون‌های غیرمخرب خطوط لوله نفت و گاز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 پژوهشگاه علوم و فنون هسته‌ای

3 دانشگاه صنعتی امیرکبیر، دانشکده مهندسی انرژی و فیزیک

10.30494/jndt.2021.276810.1063

چکیده

دمانگاری محاسباتی با استفاده از پرتوهای گاما و ایکس امروزه بعنوان یکی از قابل اعتمادترین مدالیته‌های تصویربرداری از اجسام برای مقاصد آزمون‌های غیرمخرب در صنایع گوناگون استفاده می‌شود. این دستگاه‌ها می­توانند تصویری سه‌بعدی از مقطع‌های داخل جسم مورد بازرسی ارائه دهند. بر اساس شکل باریکه پرتوهای خروجی از منبع پرتو در دستگاه‌های دمانگاری آشکارسازها در مقابل چشمه قرار گرفته و با چرخش 360 درجه حول شیء برای تشکیل پروجکشن‌ها داده­برداری انجام شده و در نهایت بازسازی تصویر صورت می‌پذیرد. در این مقاله با استفاده از کد مونت‌کارلویی MCNPX2.7e یک سامانه سی‌تی صنعتی پرتابل با شکل باریکه بادبزنی شبیه‌سازی شد. تعداد آشکارسازها بعلت پرتابل بودن آن 19 عدد انتخاب شد و از دو فانتوم استاندارد صنعتی و یک فانتوم ابتکاری به منظور ثبت پروجکشن‌ها و صحت عملکرد آن بهره برده شد. پرتوهای گامای کبالت-60 پس از ترابرد از شیء مورد بررسی روی آشکارساز‌ها ثبت شده و داده‌های مهم پروجکشن‌ها را برای زاویه‌های گوناگون می‌سازند. نتایج به دست آمده از کد مونت کارلویی MCNP سپس با کد Fluka اعتبارسنجی شد و مقادیر به دست آمده توافق بسیار خوب و نزدیکی داشتند. نتایج شامل تعداد زیادی تابع پروجکشن است که سپس می­تواند برای ایجاد ماتریس سینوگرام استفاده شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Projection Data Acquisition in Industrial Fan-Beam Computed Tomography Using Monte Carlo Modeling in Gas and Oil Pipelines Non-destructive testing

نویسندگان [English]

  • Mostafa Kabir 1
  • Amir Movafeghi 2
  • Hossein Afarideh 3
1 Energy engineering and physics department, Amirkabir University of Technology, Tehran, Iran
2 Nuclear Science and Technology Institute
3 Physics and Energy Engineering Department, Amirkabir University of Technology
چکیده [English]

Computed tomography using gamma- and X-rays has been using as one of the most reliable imaging modalities for non-destructive testing purposes in different fields of industry. These devices can provide a three-dimensional image of the sections inside the object under inspection. Based on the shape of the beam, the output beams from the beam source are placed in front of the source in the tomographic devices, detectors are placed in front of the source and rotated 360 degrees around the object to obtain projections and finally, the image is reconstructed. In this paper, a portable industrial CT system with the shape of a fan beam is simulated using the MCNPX2.7e Monte Carlo code. The number of detectors was selected as 19 due to its portability, and an industrial standard phantoms and an innovative phantom were used to acquire projections for verification of simulation operation. Cobalt-60 gamma rays are recorded on the detectors after being transported from the object under study and generate important projection data for various angles. The results include a large number of projection functions that can then be used to create a sinogram matrix.

کلیدواژه‌ها [English]

  • non-destructive testing
  • Computed Tomography
  • Fan-beam industrial CT
  • Monte Carlo Method
  • Projection function
David C. Copley, Jeffrey W. Eberhard, Gregory A. Mohr, Computed Tomography Part I: Introduction and Industrial Application, The Journal of The Minerals, Metals & Materials Society (JOM), 46, pages14–26(1994)
[2] Z. Rumboldt, W. Huda, J.W. All, Review of Portable CT with Assessment of a Dedicated Head CT Scanner, AJNR ,Am J Neuroradiol, 2009 Oct;30(9):1630-6. doi: 10.3174/ajnr. A1603.
[3] M.S. Rapaport and A. Gayer, Application of gamma ray computed tomography to nondestructive testing, NDT&E International Volume 24 Number 3 June 1991
[4] Kogure Jin, Kawamura Hiromi, Onoe Morio, Tsao J.W., Yamada Hiroaki, Rot detection of wood poles by means of a portable x-ray computed tomographic scanner, Reference Number, International Nuclear Information System, No. 15059107, INIS Volume 15, INIS Issue 19, 1983
[5] Onoe, M.; Tsao, J.W.; Yamada, H.; Nakamura, H.; Kogure, J.; Kawamura, H.; Isono, E.; Maeda, Y, Matsumoto, Portable CT scanners for use on live trees and standing columns, p. 680-687, 11th world conference on nondestructive testing; Las Vegas, NV (USA, 1985
[6] Sung-Hee Jung, Jong-bum Kim Jinho Moon, PORTABLE INDUSTRIAL LIMITED ANGLE GAMMA-RAY TOMOGRAPHY SCANNING SYSTEM, USPATENT, US 9,057,680 B2 2015
[7] Bayu Azmi, Wibisono, Adhi Harmoko Saputro, Portable Gamma Ray Tomography System for Investigation of Geothermal Power Plant Pipe Scaling, 2017 15th Intl. Conf. QiR: Intl. Symp. Elec. and Com. Eng, 978-602-50431-1-6/17/$31.00 ©2017 IEEE
[8] Laurence Schimleck, Joseph Dahlen, Luis A. Apiolaza, Geo Downes, Grant Emms, Robert Evans, John Moore, Luc Pâques, Jan Van den Bulcke and Xiping Wang, Non-Destructive Evaluation Techniques and What They Tell Us about Wood Property Variation, Forests 2019, 10, 728; doi:10.3390/f10090728
[9] Moez Eltayeb, Sayed M. kbashi, Amar Osman, Suliman Abdalla, Mustafa. A. W. The Design of Portable Gamma Computed Tomography Scanner System, International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering, IEEE, 2015
[10] http://www.canti.vn/en, Centre For Applications of Nuclear Technique in Industry.
[11] Ehsan Samei, Norbert J. Pelc, Computed Tomography: Approaches, Applications, and Operations, Springer International Publishing, 2020  /doi.org/10.1007/978-3-030-26957-9
[12] Jerry L. Prince, Jonathan Links, Medical Imaging Signals and Systems, 2nd Edition, PRENTICE HALL, 2015
[13] Alireza Haghighat, Monte Carlo Methods for Particle Transport, CRC Press, 1st ed., 2014
[14] Mohammad Reza Ay, Habib Zaidi, Development and validation of MCNP4C-based Monte Carlo simulator for fan- and cone-beam x-ray CT, Phys Med Biol 2005 Oct 21;50(20):4863-85. doi: 10.1088/0031-9155/50/20/009
[15] Mojtaba Askari, Ali Taheri, Majid Mojtahedzadeh larijani, Amir Movafeghi, Industrial gamma computed tomography using high aspect ratio scintillator detectors (A Geant4 simulation) Nuclear Inst. and Methods in Physics Research, A 923 (2019) 109–117
[16] A.F. Velo, M.M. Hamada, D.V.S. Carvalho, J.F.T. Martins, C.H. Mesquita, A portable tomography system with seventy detectors and five gamma-ray sources in fan beam geometry simulated by Monte Carlo method, Flow Measurement and Instrumentation 53 (2017) 89–94
[17] Jongbum Kim, Sunghee Jung, Jinho Moon, Gyuseong Cho, A feasibility study on gamma-ray tomography by Monte Carlo simulation for development of portable tomographic system, Applied Radiation and Isotopes70(2012)404–414
[18] A.F. Velo, A.G. Alvarez, D.V.S. Carvalho, V. Fernandez, S. Somessari, F.F. Sprenger, M.M Hamada, C.H. Mesquita, A Third Generation Tomography System with Fifteen Detectors Simulated by Monte Carlo Method, BRAZILIAN JOURNAL OF RADIATION SCIENCES, 07-02A (2019) 01-13
[19] Hughes H G 1997 Status of electron transport in MCNP Los Alamos National Laboratory LA-UR-97-1368 (Los Alamos, NM)
[20] INDUSTRIAL PROCESS GAMMA TOMOGRAPHY, IAEA, VIENNA, IAEA-TECDOC-1589, 2008
[21] A. Ferrari, P.R. Sala, A. Fasso`, and J. Ranft, "FLUKA: a multi-particle transport code" CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773.