معرفی تکنیک تعیین ضرایب ثابت الاستیک قطعات تولید افزایشی اینکونل ۶۲۵ بوسیله آزمون فراصوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد دانشکده مهندسی مکانیک دانشگاه علم و صنعت ایران

2 کارشناس ارشد دانشگاه علم و صنعت ایران

10.30494/jndt.2021.272011.1051

چکیده

چکیده
طبیعت فرآیندهای تولید تجمعی حاکی از وجود خواص تابع جهت در ریز ساختار مواد می باشد. این درجه ناهمسانگرد کاملا وابسته به پارامترهای فرآیند و همچنین راه اندازی اولیه ماشین است. بنابراین، خواص این نوع مواد درهرکدام از جهتها باید شناخته شده باشند. متدهای متنوعی از قبیل مخرب و غیر مخرب برای تعیین خواص مکانیکی مواد وجود دارند. بکارگیری متد اولتراسونیک برای تعیین ضریب ثابت الاستیک برای سنگ، چوب، مواد مرکب، و فلزات کارشده بیانگر قابلیت بالا، اعتبار سنجی فابل قبول و قابلیت تکرار آن است. در این مقاله، 9 ضریب ثابت الاستیک برای قطعات تولید شده تجمیعی بوسیله سینرینگ لیزری مستقیم فلزات مشخص شده است که از محاسبه سرعت موجهای طولی و برشی بوسیله اندازه گیری تماسی برای پارامترهای مختلف تولید بدست آمده است. در این پژوهش، همچنین مقایسه بین خواص مکانیکی قطعات حین تولید در سه جهت اصلی محوری علاوه بر محاسبه سرعت درهرجهت انجام شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Elastic Constants of Additive Manufactured Inconel-625 parts by means of Ultrasonic Technique

نویسندگان [English]

  • mohammad Riahi 1
  • hamidreza Javidrad 2
1 Professor, School of Mechanical Engineering, IUST
2 M.Sc. Graduate student-IUST
چکیده [English]

Abstract
Nature of additive manufacturing processes dictate direction-related properties to the final parts and this degree of anisotropy is highly dependenton the process parameters and machine setup, Consequently, the formed properties in such materials should be known in any direction and in any aspect related to the origins assumed initially. There are several methods including destructive and non-destructive techniques for specifying mechanical properties in parts. Using ultrasonic testing, as a nondestructive method, in order to determine elastic constants for rocks, woods, composite and wrought materials, represent its reliability and validity, as well as its repeatability and non-destructivity through years. In this paper, 9 independent elastic constant for orthotropic additively manufactured direct metal laser sintering (DMLS) parts are determined from longitudinal and transverse ultrasound velocities via contact ultrasonic testing for different manufacturing process parameters. This work also carried out comparisons between mechanical properties of as-built parts in three principle directions, as well as ultrasound wave velocities.

کلیدواژه‌ها [English]

  • Keywords: Additive Manufacturing
  • direct metal laser sintering
  • Elastic Constants
  • Ultrasonic testing
  • Inconel-625
 
[1] S. Pal, N. Gubeljak, R. Hudak, G. Lojen, V. Rajtukova, J. Predan, V. Kokol, I. Drstvensek, “Tensile properties of selective laser melting products affected by building orientation and energy density”, Materials Science and Engineering: A, Volume 743, (2019), pp. 637 – 647. https://doi.org/10.1016/j.msea.2018.11.130
[2] J. A. Gonzalez, J. Mireles, S. W. Stafford, M. A. Perez, C. A. Terrazas, R. B. Wicker, “Characterization of Inconel 625 fabricated using powder-bed-based additive manufacturing technologies”, Journal of Materials Processing Tech. 264, (2019), pp. 200 – 210. https://doi.org/10.1016/j.jmatprotec.2018.08.031
[3] E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, “Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel”, Journal of Materials Processing Tech. 249, (2017), pp. 255 – 263. http://dx.doi.org/10.1016/j.jmatprotec.2017.05.042.
[4] Y. Kok, X. P. Tan, P.Wang, M. L. S. Nai, N. H. Loh, E. Liu, S. B. Tor, “Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review”, Materials and Design 139, (2018), pp. 565 – 586. https://doi.org/10.1016/j.matdes.2017.11.021
[5] L. Hitzler, J. Hirsch, B. Heine, M. Merkel, W. Hall, A. Öchsner, “On the Anisotropic Mechanical Properties of Selective Laser-Melted Stainless Steel”, Materials 10, (2017), 1136; doi:10.3390/ma10101136.
[6] M. M. Jalili, A. S. Pirayeshfar, S. Y. Mousavi, “Non-Destructive Acoustic Test (NDAT) to Determine Elastic Modulus of Polymeric Composites”, in: EWGAE 2010, Vienna, 8th to 10th September.
[7] M. Alfano, L. Pagnotta, “Determining the elastic constants of isotropic materials by modal vibration testing of rectangular thin plates”, Journal of Sound and Vibration Volume 293, Issues 1–2, (2006), pp. 426 – 439. https://doi.org/10.1016/j.jsv.2005.10.021
[8] P. S. Frederiksen, “Experimental Procedure and Results for the Identification of Elastic Constants of Thick Orthotropic Plates.” Journal of Composite Materials, vol. 31, no. 4, (1997), pp. 360 – 382, doi:10.1177/002199839703100403.
[9] W. C. Van Buskirk, S. C. Cowin, R. N. Ward, “Ultrasonic Measurement of Orthotropic Elastic Constants of Bovine Femoral Bone”, Journal of Biomechanical Engineering Vol. 103, (1981), pp. 67 – 72. doi:10.1115/1.3138262
[10] J. J. Liao, T., -B. Hu, C. -W. Chang, “Determination of Dynamic Elastic Constants of Transversely Isotropic Rocks Using a Single Cylindrical Specimen”, International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 7, (1997), pp. 1045 – 1054.https://doi.org/10.1016/S1365-1609(97)90198-2
[11] S. Mistou, M. Karama, “Determination of the Elastic Properties of Composite Materials by Tensile Testing and Ultrasound Measurement”, Journal of Composite Materials, vol. 34, No. 20, (2000), pp. 1696 – 1709. https://doi.org/10.1106/UY4R-FG3H-HKGW-UD3Q
[12] A. Amado-Becker, J. Ramos-Grez, M. J. Yañez, Y. Vargas, L. Gaete, “Elastic tensor stiffness coefficients for SLS Nylon 12 under different degrees of densification as measured by ultrasonic technique”, Rapid Prototyping Journal 14/5 (2008), pp. 260 – 270, DOI 10.1108/13552540810907929.
[13] L. B., Malefane, W. B. du Preez, M., Maringa, “Testing for homogeneity and orthotropy of Ti6Al4V (ELI) parts built by Direct Metal Laser Sintering”, in: 17th Annual Conference of the Rapid Product Development Association of South Africa, 2016.
[14] D. R. Foster, M. J. Dapino, S. S. Babu, “Elastic constants of Ultrasonic Additive Manufactured AL 3003-H18”, Ultrasonics 53, (2013), pp. 211 – 218. https://doi.org/10.1016/j.ultras.2012.06.002
[15] M. Mah, D. R. Schmitt, “Determination of the complete elastic stiffnesses from ultrasonic phase velocity measurements”, Journal of Geophysical Research, Vol. 108, NO. B1, 2016, (2003). https://doi.org/10.1029/2001JB001586
[16] R. C. K. Wong, D. R. Schmitt, D. Collis, R. Gautam, “Inherent transversely isotropic elastic parameters of over-consolidated shale measured by ultrasonic waves and their comparison with static and acoustic in situ log measurements”, Journal of Geophysics and Engineering 5, (2008), pp. 103 – 117. https://doi.org/10.1088/1742-2132/5/1/011
[17] R. Gonҫalves, M. G. Júnior, I. M. Lopes, “Determiningthe Concrete Stiffness Matrixthrough Ultrasonic Testing”, Eng. Agríc., Jaboticabal, v.31, n.3, (2011), pp.427 – 437.http://dx.doi.org/10.1590/S0100-69162011000300003
[18] R. Longo, T. Delaunay, D. Laux, M. El Mouridi, O. Arnould, E. Le Clézio, “Wood elastic characterization from a single sample by resonant ultrasound spectroscopy”,Ultrasonics 52, (2012), pp. 971 – 974. https://doi.org/10.1016/j.ultras.2012.08.006
[19] T. Svitek, V. Vavryčuk, T. Lokajíáek, M. Petružálek, “Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements”, Geophysical Journal International 199, (2014), pp. 1682–1697.https://doi.org/10.1093/gji/ggu332
[20] M. Kersemans, A. Martens, N. Lammens, K. Van Den Abeele. J. Degrieck, F. Zastavnik, L. Pyl, H. Sol, W. Van Paepegem, “Identification of the Elastic Properties of Isotropic and Orthotropic Thin-Plate Materials with the Pulsed Ultrasonic Polar Scan”, Experimental Mechanics 54, (2014), pp.1121 – 1132. DOI 10.1007/s11340-014-9861-7.
[21] S. Z. Khan, T. M. Khan, Y. F. Joya, M. A. Khan, S. Ahmed, A. Shah, “Assessment of material properties of AISI 316L stainless steel using non-destructive testing”, Nondestructive Testing and Evaluation, V. XX, No. X, (2015), pp. 1–11.http://dx.doi.org/10.1080/10589759.2015.1121265
[22] E. Hu, W. Wang, “The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature”, Mathematical Problems in Engineering Volume 2016, Article ID 6762076, 7 pages http://dx.doi.org/10.1155/2016/6762076
[23] J. Crespo, J. R. Aira, C. Vázquez, M. Guaita, “Comparative Analysis of the Elastic Constants Measured via Conventional, Ultrasound, and 3-D Digital Image Correlation Methods in Eucalyptus globulus Labill”, BioResources 12 (2), 2017, pp. 3728 – 3743.
[24]Y. Zhan, C. Liu, X. Kong, Y. Li, “Measurement of fiber reinforced composite engineering constants with laser ultrasonic”, Applied Acoustics 139 (2018),pp. 182–188.https://doi.org/10.1016/j.apacoust.2018.04.036
[25] A. Shukla, “Determination of elastic constants of Inconel‑625 superalloy, using laser‑based ultrasonic”, Journal of Theoretical and Applied Physics 13, (2019), pp. 49 – 54. https://doi.org/10.1007/s40094-018-0311-2
[26] D. A. P. Paterson, W. Ijomah J. F. C. Windmill, “Elastic constant determination of unidirectional composite via ultrasonic bulk wave through transmission measurements: A review”, Progress in Materials Science, Volume 97, August 2018, pp. 1 – 37. https://doi.org/10.1016/j.pmatsci.2018.04.001
[27] W. C. Van Buskirk, S. C. Cowin, R. Carter Jr, “A theory of acoustic measurement of the elastic constants of a general anisotropic solid”, Journal of Materials Science 21, (1986), pp. 2759 – 2762, DOI 10.1007@BF00551484.
[28] J. Summerscales, “The bulk modulus of carbon fibers”, Journal of Materials Science Letters 19, (2000), pp. 15 – 16. https://doi.org/10.1023/A:1006731210592
[29] EOS Nickel Alloy IN625 Material Data Sheet. Electro Optical Systems.https://dmlstechnology.com/images/pdf/EOS_NickelAlloy_IN625.pdf
[30] H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O'Donnell, D. Trimble, “Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review”, International Journal of Machine Tools and Manufacture, Volume 128, (2018), pp. 1 – 20. https://doi.org/10.1016/j.ijmachtools.2018.01.003
[31] Metals Handbook, Vol.1 - Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International 10th Ed. 1990.
[32] M. A. Anam, D. Pal, B. Stucker, “Modeling and Experimental validation of Nickel-based super alloy (Inconel 625) made using Selective Laser Melting”, in: Proceeding of the 24th Annual International Solid Free form Fabrication Symposium-An Additive Manufacturing Conference, Austin, TX, USA, (2013), pp. 463–473. DOI: 10.13140/2.1.4009.1201
[33] L. E. Criales, Y. M. Arısoy, B. Lane, S. Moylan, A. Donmez, T. Özel, “Laser powder bed fusion of nickel alloy 625: Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis”, International Journal of Machine Tools & Manufacture 121, (2017), pp. 22–36. http://dx.doi.org/10.1016/j.ijmachtools.2017.03.004
[34] X. Chen, D. R. Schmitt, J. A. Kessler, J. Evans, R. Kofman, “Empirical relations between ultrasonic P-wave velocity, porosity and uniaxial compressive strength”, CSEG RECORDER, VOL. 40 NO. 05, MAY 2015, pp. 24 – 29.
[35] B. Chawre, “Correlations between ultrasonic pulse wave velocities and rock properties of quartz-mica schist”, Journal of Rock Mechanics and Geotechnical Engineering, Volume 10, Issue 3, June 2018, pp. 594 – 602. https://doi.org/10.1016/j.jrmge.2018.01.006
[36] A. V. Manoylov, F. M. Borodich, H. P. Evans, “Modelling of elastic properties of sintered porous materials”, Proceedings of the Royal Society A 469: 20120689, (2013). http://dx.doi.org/10.1098/rspa.2012.0689
[37] H. Gong, K. Rafi, H. Gu, G. D. Janaki Ram, T. Starr, B. Stucker, “Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting”, Mater. Des. 86, (2015), pp. 545 – 554, https://doi.org/10.1016/j.matdes.2015.07.147
[38] J. Bräunig, T. Töppel, B. Müller, M. Burkhardt, T. Hipke, W. –G. Drossel, “Advanced Material Studies for Additive Manufacturing in terms of Future Gear Application”, Advances in Mechanical Engineering Volume 2014, 10 pages. http://dx.doi.org/10.1155/2014/741083
[39] C. U. Brown, G. Jacob, M. Stoudt, S. Moylan, J. Slotwinski, A. Donmez, “Interlaboratory Study for Nickel Alloy 625 Made by Laser Powder Bed Fusion to Quantify Mechanical Property Variability”, Journal of Materials Engineering and Performance Volume 25, Issue 8, (2016), pp. 3390 – 3397. https://doi.org/10.1007/s11665-016-2169-2
[40] M. Arnold, A. R. Boccaccini, G. Ondracek, “Prediction of the Poisson's ratio of porous materials”, Journal of Materials Science, Volume 31, Issue 6, (1996), pp. 1643 – 1646. https://doi.org/10.1007/BF00357876