شناسایی عیوب قطعات ساخته شده به روش لایه نشانی مذاب با درصد پرشوندگی متفاوت با استفاده از روش دمانگاری فروسرخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 دانشگاه تربیت مدرس

چکیده

با پیشرفت روزافزون فرایندهای ساخت افزایشی و تولید محصولات دقیق‌تر با استفاده از مواد اولیه مختلف، قطعات ساخته شده از این فرایندها به طور فزاینده‌ای به عنوان محصولات نهایی مورد استفاده قرار می‌گیرند. در این موارد انجام آزمون غیرمخرب مناسب، برای شناسایی عیوب و تأیید عملکرد محصول نهایی، ضروری است. در این مقاله، برای بازرسی قطعات پلیمری، ساخته شده با فرایند لایه نشانی مذاب، از روش دمانگاری فروسرخ با تکنیک فعال استفاده شده است. سه نمونه از جنس پلی لاکتیک اسید با درصد پرشوندگی مختلف ساخته شد. در نمونه‌‌های پرینت شده، عیب سوختن فیلامنت (تغییر شکل فیلامنت و تغییر رنگ ناشی از دمای بالا) ایجاد و مورد بررسی قرار گرفت. تحریک حرارتی نمونه‌ها به صورت تابشی توسط لامپ هالوژنی با دو روش بازتابی و عبوری انجام شد. سپس تصاویر حرارتی حاصل مورد بررسی قرار گرفت و جهت سهولت در شناسایی عیوب نمودار تغییرات دما - پیکسل برای هر نمونه به طور جداگانه رسم گردید. نتایج نشان داد که در این آزمون پیکربندی بازتابی قابلیت تشخیص عیب بهتری نسبت به حالت عبوری دارد. در حالت بازتابی پس از رسم نمودارهای دما - پیکسل، در تمام نمونه‌ها، عیوب قابل شناسایی هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Active IR Thermography in Defect detection of FDM printed parts with different infill percentage

نویسندگان [English]

  • Mohamad Hasani 1
  • Davood Akbari 2
  • Amir Hossein Behravesh 1
  • Pouya Faraji kalajahi 1
1 Faculty of Mechanical Eng, Tarbiat Modares University, Tehran, Iran
2 Tarbiat Modares University
چکیده [English]

With the increasing development of additive manufacturing processes and the production of more precise products using different materials, parts made from these processes are increasingly being used as end products. In this paper Fused Deposition Modeling (FDM) printed parts are studied and tested by Active IR Thermography method. to this regard, Three PLA samples are printed with different infill rates. The filament burnout defect was produced during the printing process. The excitation performed by means of two halogen lamps, directly radiated to the samples. Two different set-ups including transmission and reflection modes are selected. The Thermal images are captured during heating as well as cooling time and all the defects are revealed in the thermal images. Results indicated that the proposed Active IR Thermography, is capable in detection of filament burnout defect in this parts. Moreover, it has been indicated that the reflection method leads to better outcomes in comparison with the transmission mode.

کلیدواژه‌ها [English]

  • Nondestructive Test
  • Active Thermography
  • Additive manufacturing
  • FDM Process
[1] Gibson, I., Rosen, D., & Stucker, B. (2016). “Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing Second Edition” Springer Verlag. pp. 1. Chap. 1.
[2] Samuel, H. H., Peng, L., Abhiram, M., & Liang, H., (2013), “Additive Manufacturing and Its Societal Impact: A Literature Review”, Int. J. Adv. Manuf. Technol, 67, pp 1191-1203.
[3] Frazier, W.E., 2014. Metal additive manufacturing: a review. Journal of Materials Engineering and performance, 23(6), pp.1917-1928.
[4] Capote, G.A.M., Rudolph, N.M., Osswald, P.V. and Osswald, T.A., 2019. Failure surface development for ABS fused filament fabrication parts. Additive Manufacturing, 28, pp.169-175.
 [5] Chua, C.K., Leong, K.F, Lim, C.S., Rapid Prototyping: Principles and Applications, World Scientific, River Edge, 2010.
[6] Es-Said, OS., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., Pregger, BA., ‘‘Effect of Layer Orientation on Mechanical Properties of Rapid Prototyped Samples’’ Advance Manufacturing Process, Vol. 15, No 1, pp. 22-107, 2000.
[7] A. Lopez, R. Bacelar, I. Pires, T.G. Santos, J.P. Sousa, L. Quintino, Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing, Additive Manuf. 21 (2018) 298–306,
[8] J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Additive Manuf. 20 (2018) 44–67.
[9] Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., Spence, D. M., “Evaluation of 3D Printing and its Potential Impact on Biotechnology and the Chemical Sciences” Analytical Chemistry, Vol. 86, No. 7, pp. 3240-3253, 2014.
[10] Schirmeister CG, Hees T, Licht EH, Mülhaupt R (2019) 3D printing of high density polyethylene by fused filament fabrication. Additive Manufacturing 28:152–159.
[11] Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, et al. Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Science and Technology. 2014; 105:144-50.
 [12] Shofner M, Lozano K, Rodríguez‐Macías F, Barrera E. Nanofiber‐reinforced polymers prepared by fused deposition modeling. Journal of applied polymer science. 2003;89(11):3081-909.
[13] Strantza, M., Aggelis, D.G., De Baere, D., Guillaume, P. and Van Hemelrijck, D., 2015. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods. Sensors, 15(10), pp.26709-26725.
[14] Tizmaghz, Nejad Mohamad, DAVOOD AKBARI, and Shobeir Ghobadi. "Capability of Digital Shearography in Crack Defect Inspection." (2021): 41-61.
[15] Shrestha, R., Chung, Y. and Kim, W., 2019. Wavelet transform applied to lock-in thermographic data for detection of inclusions in composite structures: Simulation and experimental studies. Infrared Physics & Technology, 96, pp.98-112.
[16] Omar, M.A., Said, Z., Al Raisi, A., Al Rahman, Y.A., Abusafieh, A. and Sankaran, G.N., 2016. The Calibration and Sensitivity Aspects of a Self-Referencing Routine When Applied to Composites Inspection: Using a Pulsed Thermographic Setup. Journal of Nondestructive Evaluation, 35(3), p.51.
[17] Pierce, J. R., & Crane, N. B. (2017, November). Preliminary Nondestructive Testing Analysis on 3D Printed Structure Using Pulsed Thermography. In ASME International Mechanical Engineering Congress and Exposition (Vol. 58431, p. V008T10A083). American Society of Mechanical Engineers.
[18] Meshkizadeh, P., & Farahani, M. (2022). Developing effective thermal signal processing to improve thermographic non-destructive inspection of metallic components. Nondestructive Testing and Evaluation, 1-19. ‏
[19] Saeed, N., Omar, M.A., Abdulrahman, Y., Salem, S. and Mayyas, A., 2018. IR thermographic analysis of 3D printed CFRP reference samples with back-drilled and embedded defects. Journal of Nondestructive Evaluation, 37(3), p.59.
[20] Carvalho, M. S., Martins, A. P., & Santos, T. G. (2019). Simulation and validation of thermography inspection for components produced by additive manufacturing. Applied Thermal Engineering159, 113872.
[21] Ning, Z., Liu, R., Elhajjar, R.F. and Wang, F., 2017. Micro-modeling of thermal properties in carbon fibers reinforced polymer composites with fiber breaks or delamination. Composites Part B: Engineering, 114, pp.247-255.
[22] Liu, J., Yang, W. and Dai, J., 2010. Research on thermal wave processing of lock-in thermography based on analyzing image sequences for NDT. Infrared Physics & Technology, 53(5), pp.348-357.
[23] A.A. Badghaish, D.C. Fleming, Non-destructive inspection of composites using step heating thermography, J. Compos. Mater. 42 (2008) 1337–1357.