ارائه روشی برای انتخاب مناسب‌ترین حسگرهای گازی به منظور توسعه یک سامانه بینی الکترونیک برای کیفیت‌سنجی غیر مخرب گیاهان دارویی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه مهندسی مکانیک بیوسیستم دانشکده مهندسی زراعی دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

در این پژوهش، قدرت پاسخ حسگرهای گازی نیمه هادی اکسید فلزی (MOS) به منظور ساخت یک سامانه بینی الکترونیک قابل حمل برای کیفیت‌سنجی بویایی غیر مخرب انواع مختلف گیاهان دارویی بر اساس ترکیبات آلی فرار آنها مورد ارزیابی قرار گرفت. در این مطالعه زعفران (Crocus sativus L.) به عنوان یکی از مهم‌ترین گیاهان دارویی تولید کشور استفاده شد. یک سامانه بینی الکترونیک متشکل از ده حسگر گازی اکسید فلزی (MOS)، مدارات الکترونیکی واسط، کامپیوتر و نرم‌افزار پردازشگر توسعه داده شد. داده‌های بویایی یازده نمونه مختلف زعفران توسط آرایه حسگرها در زمان‌های 350 تا 360 ثانیه دریافت و با استفاده از تحلیل مولفه‌های اصلی (PCA) و خوشه‌بند سلسله مراتبی (HCA) به منظور ارزیابی قدرت تمایز حسگرها تحلیل شدند. کیفیت‌سنجی و طبقه‌بندی نمونه‌های زعفران با روش طیف‌سنجی محلول استاندارد نمونه‌های زعفران (روش مخرب آزمایشگاهی با شماره استاندارد ISO3632) نیز به منظور مقایسه با روش غیر مخرب بینی الکترونیک انجام شد. نتایج تحلیل PCA و HCA داده‌های حسگرها در پاسخ به مواد فرار نمونه‌های زعفران نشان داد نمونه‌ها در سه گروه متفاوت قرار گرفتند. همچنین بررسی قدرت تمایز حسگرها نشان داد 2 عدد از حسگرهای استفاده شده زائد و در نتیجه امکان حذف این حسگرها وجود دارد. نتایج تحلیل آزمایشگاهی نیز منطبق بر نتایج طبقه‌بندی بوسیله بینی الکترونیک حاصل شد. با استفاده از روش ارائه شده در این پژوهش، کمترین و موثرترین تعداد حسگرهای گازی MOS به منظور کاهش هزینه‌های ساخت سامانه بینی الکترونیک و همچنین افزایش دقت طبقه‌بندی آن در نتیجه کاهش حجم داده-های پردازشگر در ارزیابی کیفیت بویایی زعفران انتخاب شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Discriminability Assessment of MOS Sensors to Develop a Portable Electronic Nose System for Non-Destructive Quality Assessment of Medicinal Plants

نویسنده [English]

  • Sajad Kiani
Biosystems Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
چکیده [English]

In this study, the discriminatory power of Metal Oxide Semiconductor (MOS) gas sensors was evaluated to develop a portable electronic nose (e-nose) system for clustering different types of saffron samples based on their Volatile Organic Components (VOCs). The system was comprised of ten MOS gas sensors, direct headspace sampling, microcontroller devices, and a laptop computer coupled with multivariate computational tools. Eleven saffron samples were procured from different geographical origins for the experiments. Principal Component Analysis (PCA) and Hiricultural Cluster Analysis (HCA) models were applied for sample clustering and for demonstrating the discriminatory power of the gas sensors as well. The quality assessment of the samples was also performed by the standard laboratory method (ISO3632). The gas sensors data were acquired at 350-360 seconds after the samples were exposed to the sensors. Results of the PCA and HCA analysis of the sensors data indicated that the saffron samples were divided into three main clusters. Also, it was found that the discrimination power of the sensors was different and the possibility of removing sensors with low discriminatory power (2 sensors) was provided. Results of laboratory analysis (destructive method) were obtained in accordance with the classification results of the e-nose data analysis. Using the proposed method to find the most effective MOS sensors and eliminating the redundant sensors can help to reduce the development costs of the electronic nose systems and the processor input data. It also increases the classification accuracy of the e-nose system in the quality control of medicinal plants.

کلیدواژه‌ها [English]

  • Electronic Nose
  • Quality Control
  • Herbs
  • Volatile Compounds
[1] Cullere, L., San-Juan, F., Cacho, J. Characterization of aroma active compounds of Spanish saffron by gas chromatography–olfactometry: Quantitative evaluation of the most relevant aromatic compounds. Food Chemistry, Vol 127, pp.1866–1871, 2011.
[2] Sereshti, H., Heidari, R., Samadi, S. Determination of volatile components of saffron by optimized ultrasound-assisted extraction in tandem with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Food Chemistry, Vol 143, pp. 499–505, 2014.
[3] Amanpour, A., Sonmezdag, A.S., Kelebek, H., Selli, S. GC–MS–olfactometric characterization of the most aroma-active components in a representative aromatic extract from Iranian saffron (Crocus sativus L.). Food Chemistry, Vol 182, pp. 251–256, 2015.
[4] Farang, M.A., Hegazi, N., Dokhalahy, E., Khattab, A.R. Chemometrics based GC-MS aroma profiling for revealing freshness, origin and roasting indices in saffron spice and its adulteration. Food Chemistry, Vol 331, No 30, 127358, 2020.
[5] Maggi, L., Sanchez, A.M., Carmona, M., Charalabos, DK., Anastasaki, E., Tarantilis, P., Polissiou, M., Alonso, G.L. Rapid determination of safranal in the quality control of saffron spice (Crocus sativus L.). Food Chemistry, Vol 127, pp. 369–373, 2011a.
[6] Jouki, M., Khazaei, N., Tavakolipour, H., Rajabifar, S., MotamediSedeh S., Kalbasi, A. Determination of Chemical Characteristics of Saffron in Different Area of Iran. Current Research Journal of Biological Sciences, Vol 4, No 1, pp. 71-74, 2012.
[7] Cossignani, L., Urbani, E., Simonetti, M.S., Maurizi, A., Chiesi, C., Blasi, F. Characterisation of secondary metabolites in saffron from central Italy (Cascia, Umbria). Food Chemistry, Vol 143, pp. 446-451, 2014.
[8] Biancolillo, A., Foschi, M.,  D’Archivio, A.A. Geographical Classification of Italian Saffron (Crocus sativus L.) by Multi-Block Treatments of UV-Vis and IR Spectroscopic Data. Molecules, Vol 25, No 10, 2332, 2020.
[9] M. Ghasemi-Varnamkhasti, S.S. Mohtasebi, M. Siadat, S. Balasubramanian, Meat quality assessment by the electronic nose (machine olfaction technology). Sensors, Vol 9, pp. 6058–6083, 2009.
[10] H. Zhou, D. Luo, H. Gholam Hosseini, Z. Li, J. He, Identification of Chinese Herbal Medicines with Electronic Nose Technology: Applications and Challenges. Sensors, Vol 17, 1073, 2017.
[11] A. Golchin, H. Zakidizaji, M. Mahmoodi Surestani, M.E. Khorasani Fardevani M.E, The electronic nose technique for nondestructive clustering of basil as a medicinal plant. Nondestructive Testing Technology, Vol 2, No 4, pp. 54-60, 2019.
[12] G. Guclu, D. Keser, H. Kelebek, M. Keskin, Y.E. Sekerli, Y. Soysal, S. Selli, Impact of production and drying methods on the volatile and phenolic characteristics of fresh and
powdered sweet red peppers. Food Chemistry, Vol 338, 128129, 2020.
[13] H. Ni, Q.X. Jiang, T. Zhang, G.L. Huang, LJ. Li, F. Chen, Characterization of the aroma of an instant white tea dried by freeze-drying. Molecules, Vol 25, No 16, 3628, 2020.
[14] M.H Maimunah, B. Agustian, B, Deep Neural Network Method to Classify Empon-Empon Herb Based on E-Nose. Fifth International Conference on Informatics and Computing (ICIC), 1-4, 2020.
[15] M. Rasekh, H. Karami, A. Dan Wilson, M. Gancarz, Classification and Identification of Essential Oils from Herbs and Fruits Based on a MOS Electronic-Nose Technology. Chemosensors, Vol 9, No 142, pp. 24-37, 2021.
[16] S. Kiani, S. Minaei, M. Ghasemi-Varnamkhasti, Application of electronic nose systems for assessing the quality of medicinal and aromatic plant products: A review. Journal of Applied Research on Medicinal and Aromatic Plants, Vol 3, pp.1-9, 2016.
[17] M. Lage, C.L. Cantrell, Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin, and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Scientia Horticulture, Vol 121, pp. 366–373, 2011.
[18] M. Carmona, J. Martínez, A. Zalacain, M.L. Rodríguez-Méndez, J.A. de Saja, G.L. Alonso, Analysis of saffron volatile fraction by TD-GC–MS and e-nose. European Food Research and Technology, Vol 223, pp. 96–101, 2006.
[19] M. Ghasemi-Varnamkhasti, S.S. Mohtasebi, M. Siadat, S.H. Razavi, H. Ahmadi, A. Dicko, Discriminatory power assessment of the sensor array of an electronic nose system for the detection of nonalcoholic beer aging, Czech J. Food Sci, Vol 30, No 3, pp. 230-236, 2012.
[20] ISO 3632-1, 2011. Saffron (Crocus sativus L.): Specifications (2003 revised 2011). Switzerland: Geneva, International Standards Organization.
[21] S.M. Scott, D. James, Z. Ali, Data analysis for electronic nose systems. Microchim Acta, Vol 156, pp. 183–207, 2007.
[22] R. Gutierrez-Osuna, Pattern Analysis for Machine Olfaction: A Review. IEEE Sensors Journal, Vol2, No 3, pp.189-202, 2002.
[23] Rahimzadeh, H., Sadeghi, m., Mireei, S.A., Ghasemi-Varnamkhasti, M. Unsupervised modeling of rice aroma change during aging based on the electronic nose coupled with bio-inspired algorithms. Biosystems Engineering, Vol 216, pp. 132-146, 2020.
[24] Gancarz, M., Malaga-Toboła, U., Oniszczuk, A., Tabor, S., Oniszczuk, T., Gawrysiak-Witulska, M., Rusinek, R. Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread-making process. Food and Bioproducts Processing, Vol 127, pp. 90–98, 2021.
[25]  Chen, L-Y.,  Wu, C-C., Chou, T-I., Chiu, S-W., Tang, K-T. Development of a Dual MOS Electronic Nose/Camera System for Improving Fruit Ripeness Classification. Sensors, Vol 18, No 10, 3256, 2018.
[26] Feng, T., Zhuang, H., Ye, R., Jin, Z., Xu, X., Xie, Z. Analysis of volatile compounds of Mesona Blumes gum/rice extrudates via GC–MS and electronic nose. Sensors and Actuators B, Vol 160, pp.  964–973, 2011.
[27] Lin, H., Yan, Y., Zhao, T., Peng, L., Zou, H., Li, J. Rapid discrimination of apiaceae plants by electronic nose coupled with multivariate statistical analyses. J. Pharm. Biomed. Anal, Vol 84, pp. 1–4, 2013.
[28] Lin, H., Zhao, T., Zou, H.Q., Peng, L., Jia-Hui, L.I., Ren, Z.Y. Study on identification to the different origin of cultivated and wild Oxybaphus Himalaicus Edgew. by electronic nose. Chin. J. Tradit. Chin. Med. Pharm, Vol 29, pp.1834–1837, 2014.
[29] Kim, S.-Y., Li, J., Lim, N.-R., Kang, B.-S., Park, H.-J. Prediction of warmed-over flavor development in cooked chicken by the colorimetric sensor array. Food Chemistry, Vol 211, pp. 440-447, 2016.